

Mojim: A Reliable and Highly-Available Persistent Memory System

Yiying Zhang, Jian Yang, Amirsaman Memaripour, Steven Swanson

Problem

Traditional data-replication schemes are designed for disk-based data

Too slow for next-generation non-volatile main memory (NVMM)

- Heavy protocol and software
- I/O based instead of memory access

Consequence

Expensive NVMMs produce little performance improvement

Need to reconsider data replication for NVMM!

Mojim Solution

Memory-to-memory replication

Flexible Modes

Provide different levels of reliability, availability, consistency, and \$ cost

Atomic Support

Results

Mojim replication can even be faster than no replication! **29% - 72% latency** 0.5 – 3.5x throughput

Mojim improves current replication schemes by up to 42x

Mojim Architecture

- software overhead

Evaluation

Research Questions

- What is the performance of different Mojim modes?
- How does Mojim compare with other replication methods?
- What is the performance of Mojim with real applications?

Environment

- 40 Gbps Infiniband and 1 Gbps Ethernet
- DRAM as a stand-in for NVMM

Avg msync Latency

- Random 4KB *msync* calls in a 4GB *mmap*'d file
- no-flush: un-replicated without CPU cache flushes

Existing replication schemes:

Write-all: allow write to all nodes with strong consistency

Chain-rep: write to primary, serialize replication to secondaries

Braodcast-rep: write to primary, broadcast replication to secondaries

