
Building a safety verifier for Wasm

Evan Johnson, David Thien, Yousef Alhessi,

Shravan Narayan, Fraser Brown, Sorin Lerner, Tyler

McMullen, Stefan Savage, Deian Stefan

WebAssembly

● Platform independent bytecode used in and out of the browser
○ Supported by all major browsers

○ Can be targeted by most major languages

● Can be compiled to native code to improve performance
○ Fastly CDN AOT compiles Wasm modules for deployment

○ Firefox AOT-compiles 2 of its media processing libraries from Wasm

○ Microsoft Flight Simulator deploys some of its code as AOT-compiled Wasm

WebAssembly security

● WebAssembly modules are isolated — they never access outside their

assigned address space.

● Wasm-to-native compiles guarantee isolation by inserting dynamic safety

checks into generated native code
○ Memory accesses are checked to be in bounds

○ Indirect jumps and calls are checked to point to valid code

● Safety checks are inserted before optimization

Compilation gone wrong

...

for(int i = 0; i < 10; i++){

switch(casenum){ … }

}

xor rcx rcx;

Loop_Start: cmp rax, 0x7;

jae default_case;

mov rdx, jump_table_base;

mov rbx, [rdx + rax * 4];

add rdx, rbx; jump to the target

jmp rdx;

…

add ecx, 1

cmp ecx, 10

jle Loop_Start

Not Optimized

Compilation gone wrong

...

for(int i = 0; i < 10; i++){

switch(casenum){ … }

}

xor rcx rcx;

Loop_Start: cmp rax, 0x7;

jae default_case;

mov rdx, jump_table_base;

mov rbx, [rdx + rax * 4];

add rdx, rbx; jump to the target

jmp rdx;

…

add ecx, 1

cmp ecx, 10

jle Loop_Start

Not Optimized

xor rcx rcx;

mov rdx, jump_table_base;

mov rbx, [rdx + rax * 4];

Loop_Start: cmp rax, 0x7;

jae default_case;

add rdx, rbx; jump to the target

jmp rdx;

…

add ecx, 1

cmp ecx, 10

jle Loop_Start

Optimized

Compilation gone wrong

...

for(int i = 0; i < 10; i++){

switch(casenum){ … }

}

xor rcx rcx;

Loop_Start: cmp rax, 0x7;

jae default_case;

mov rdx, jump_table_base;

mov rbx, [rdx + rax * 4];

add rdx, rbx; jump to the target

jmp rdx;

…

add ecx, 1

cmp ecx, 10

jle Loop_Start

Not Optimized

xor rcx rcx;

mov rdx, jump_table_base;

mov rbx, [rdx + rax * 4];

Loop_Start: cmp rax, 0x7;

jae default_case;

add rdx, rbx; jump to the target

jmp rdx;

…

add ecx, 1

cmp ecx, 10

jle Loop_Start

Optimized

What went wrong?

● Safety checks are inserted before compiler optimizations run for performance

reasons.

● Compiler passes can move or wrongly ellide these checks in such a way that

unsafe behavior is allowed.

● This can break isolation, and potentially allow unsafe code to run.

Goal: Check whether AOT-compiled Wasm is safe

● Building a verified compiler is labor-intensive
○ Compcert required over 100,000 lines of code and 6 person years to complete

● Instead: check whether Wasm code is safe, post-compilation

VeriWasm

● Checks untrusted x86 module output by compiler

● Safety properties checked for each function

● Outputs isolation judgement for full binary

Verifying the safety of natively-compiled Wasm

● What does VeriWasm check?

● How does VeriWasm check it?

● How do we know VeriWasm is correct?

Verifying the safety of natively-compiled Wasm

● What does VeriWasm check?

● How does VeriWasm check it?

● How do we know VeriWasm is correct?

What does VeriWasm check?

● Isolation: For all possible executions of the module, the module never

accesses memory outside it’s address space or otherwise executes unsafe

code.

What does VeriWasm check?

● Isolation: For all possible executions of the module, the module never

accesses memory outside it’s address space or otherwise executes unsafe

code.

● Problem: verifying isolation of arbitrary binaries is at worst undecidable, and

at best complex and not scalable

What does VeriWasm check?

● Isolation: For all possible executions of the module, the module never

accesses memory outside it’s address space or otherwise executes unsafe

code.

● Problem: verifying isolation of arbitrary binaries is at worst undecidable, and

at best complex and not scalable

● Two key insights that simplify analysis:
○ We can take advantage of language-level restrictions of Wasm

○ We can break down the isolation property into simpler safety subproperties that together prove

isolation

Insight 1: Take advantage of Wasm structure

● Code generated from Wasm only represents a subset of x86-64

● Some code constructs like arbitrary computed jumps are not representable in

Wasm

Insight 1: Take advantage of Wasm structure

● Code generated from Wasm only represents a subset of x86-64

● Some code constructs like arbitrary computed jumps are not representable in

Wasm

local.get localidx

local.set localidx

WebAssembly X86-64

Insight 2: Break isolation into simpler properties

● Isolation: For all possible executions of the module, the module never

accesses memory outside it’s address space or otherwise executes unsafe

code.

Insight 2: Break isolation into simpler properties

● Isolation: For all possible executions of the module, the module never

accesses memory outside it’s address space or otherwise executes unsafe

code.

● Instead: prove simpler properties that together prove isolation

Example safety property: linear memory safety

● Invariant 1: All linear memory accesses fall in LinearMemBase + 8GB region
○ Show that all accesses are of the form:

mem[LinearMemBase + x + y] where x <= 2^32 and y <= 2^32

● Invariant 2: At every function call, the RDI register is LinearMemBase

Verifying the safety of natively-compiled Wasm

● What does VeriWasm check?

● How does VeriWasm check it?

● How do we know VeriWasm is correct?

Analysis passes

● Each function is analyzed independently
○ Simplifies analysis

○ Allows for checking in parallel

● Analysis based on abstract interpretation

● Track state of variables in registers and on the stack

Heap analysis example

Heap analysis example

Heap analysis example

Heap analysis example

Heap analysis example

Verifying the safety of natively-compiled Wasm

● What does VeriWasm check?

● How does VeriWasm check it?

● How do we know VeriWasm is correct?

Verification

● We verify in the Coq theorem prover:
○ That proving all our subproperties implies isolation

○ That our verification algorithm is sound

● Verification uncovered several bugs in our implementation:
○ RDI (the register designated to hold the heap base) needs to point to the base of the heap at

each call

○ VeriWasm must compensate for the fact that function calls may not save callee-saved

registers

Evaluating VeriWasm

● We verified several libraries:
○ 2 firefox libraries currently shipped as natively-compiled Wasm

○ Spec2006 benchmarks (or subset that we can compile to Wasm)

○ Lucet’s microbenchmark suite

● Verified 101 executables on Fastly’s edge computing platform

● Rediscovered bugs in other SFI systems

Evaluation performance

● Validates ~10 functions a second

● Firefox libraries require less than 3 minutes to validate each

● Fastly binaries require median of 6 minutes 30 seconds

Summary

● VeriWasm can verify that Wasm modules compiled to native code are safe.

● It does this by splitting isolation into simpler properties and verifying these

simpler properties

● We verify our verification algorithm using the Coq theorem prover

