Building a safety verifier for Wasm

Evan Johnson, David Thien, Yousef Alhessi,
Shravan Narayan, Fraser Brown, Sorin Lerner, Tyler
McMullen, Stefan Savage, Deian Stefan

WebAssembly

e Platform independent bytecode used in and out of the browser

o Supported by all major browsers
o Can be targeted by most major languages

e Can be compiled to native code to improve performance
o Fastly CDN AOT compiles Wasm modules for deployment
o Firefox AOT-compiles 2 of its media processing libraries from Wasm
o Microsoft Flight Simulator deploys some of its code as AOT-compiled Wasm

WebAssembly security

e WebAssembly modules are isolated — they never access outside their
assigned address space.

e \Wasm-to-native compiles guarantee isolation by inserting dynamic safety

checks into generated native code
o Memory accesses are checked to be in bounds
o Indirect jJumps and calls are checked to point to valid code

e Safety checks are inserted before optimization

Compilation gone wrong

for(inti =0; i< 10; i++){
switch(casenum){ ... }

}

Not Optimized @

XOr ICX rcX;

Loop_Start: cmp rax, 0x7,

jae default_case;

mov rdx, jump_table base;
mov rbx, [rdx + rax * 4];

add rdx, rbx; jump to the target
jmp rdx;

add ecx, 1
cmp ecx, 10
jle Loop_Start

Compilation gone wrong

}

for(inti =0; i< 10; i++){
switch(casenum){ ... }

Not Optimized @

XOr ICX rcX;

Loop_Start: cmp rax, 0x7,

jae default_case;

mov rdx, jump_table base;
mov rbx, [rdx + rax * 4];

add rdx, rbx; jump to the target
jmp rdx;

add ecx, 1
cmp ecx, 10
jle Loop_Start

@ Optimized

XOr rCX rcX;
mov rdx, jump_table base;
mov rbx, [rdx + rax * 4];
Loop_Start: cmp rax, 0x7,

jae default_case;

add rdx, rbx; jump to the target
jmp rdx;

add ecx, 1
cmp ecx, 10
jle Loop_Start

Compilation gone wrong

Mark the jump_table_entr

Checl

ks 0

for(inti =0; i< 10; i++){ Cmerin @ | < Conme @
switch(casenum){ ... } Q) come o
}
Not Optimized @ @ Optimized
XOr ICX rcX; XOr ICX ICX;

Loop_Start: cmp rax, 0x7,

jae default_case;

mov rdx, jump_table base;
mov rbx, [rdx + rax * 4];

add rdx, rbx; jump to the target
jmp rdx;

add ecx, 1
cmp ecx, 10
jle Loop_Start

mov rdx, jump_table base;
mov rbx, [rdx + rax * 4];
Loop_Start: cmp rax, 0x7,

jae default_case;

add rdx, rbx; jump to the target
jmp rdx;

add ecx, 1
cmp ecx, 10
jle Loop_Start

y Instruction as loading #805

PV EGERRY bribvr merged 1 commit into bytecodealliance:ma

burimark-jrencry-as-1oad [on Jun 27, 2019

Files changed 3

What went wrong?

e Safety checks are inserted before compiler optimizations run for performance
reasons.

e Compiler passes can move or wrongly ellide these checks in such a way that
unsafe behavior is allowed.

e This can break isolation, and potentially allow unsafe code to run.

Goal: Check whether AOT-compiled Wasm is safe

e Building a verified compiler is labor-intensive
o Compcert required over 100,000 lines of code and 6 person years to complete

e Instead: check whether Wasm code is safe, post-compilation

VeriwWasm

e Checks untrusted x86 module output by compiler
e Safety properties checked for each function
e Outputs isolation judgement for full binary

VeriWasm

baz
bar

Untrusted Wasm Untrusted foo

Module
—» Lucet x86-64 5 Disassembly —»
mov rbp, rspj

Linear memory
Isolated?

Stack safe?

Control-flow
safe?

o

Global variable
Isolated?

aNv

Is the
module

safe?
—>

Verifying the safety of natively-compiled Wasm

e \What does Veriwasm check?
e How does VeriwWasm check it?

e How do we know Veriwasm is correct?

Verifying the safety of natively-compiled Wasm

e \What does VeriwWasm check?
e How does VeriwWasm check it?

e How do we know Veriwasm is correct?

What does VeriwWasm check?

e |Isolation: For all possible executions of the module, the module never
accesses memory outside it's address space or otherwise executes unsafe
code.

What does VeriwWasm check?

e |[solation: For all possible executions of the module, the module never
accesses memory outside it's address space or otherwise executes unsafe

code.

e Problem: verifying isolation of arbitrary binaries is at worst undecidable, and
at best complex and not scalable

What does VeriwWasm check?

e |[solation: For all possible executions of the module, the module never
accesses memory outside it's address space or otherwise executes unsafe

code.

e Problem: verifying isolation of arbitrary binaries is at worst undecidable, and
at best complex and not scalable

e Two key insights that simplify analysis:
o We can take advantage of language-level restrictions of Wasm
o We can break down the isolation property into simpler safety subproperties that together prove
isolation

Insight 1: Take advantage of Wasm structure

e Code generated from Wasm only represents a subset of x86-64
e Some code constructs like arbitrary computed jumps are not representable in
Wasm

Insight 1: Take advantage of Wasm structure

e Code generated from Wasm only represents a subset of x86-64
e Some code constructs like arbitrary computed jumps are not representable in
Wasm

ooal aet localid rsp = rsp =+ ¢ stack adjustments
ocal.get localiax

local.set localidx — x = mem[rsp = c] stack loads
mem[rsp £ c] = x stack stores

WebAssembly X86-64

Insight 2: Break isolation into simpler properties

e |Isolation: For all possible executions of the module, the module never
accesses memory outside it's address space or otherwise executes unsafe
code.

Insight 2: Break isolation into simpler properties

e |Isolation: For all possible executions of the module, the module never
accesses memory outside it's address space or otherwise executes unsafe
code.

e Instead: prove simpler properties that together prove isolation

Feature | Safety property Description
Lincar memory | Linear memory isolation | All linear memory reads and writes fall within the 4GB linear memory space (or surrounding guard pages).
S Stack isolation Stack reads fall within the stack region (or surrounding guard pages).
tack . .) . : .
Stack-frame integrity Stack writes are to local variables in the current stack frame.
Global variables | Global variable isolation | Global variable accesses fall within the global variable memory region.
Jump target validity All indirect jumps target valid code blocks.
Control flow Call target validity All indirect calls target valid functions.
Return target validity Functions retum to their respective call sites.

Example safety property: linear memory safety

e Invariant 1: All linear memory accesses fall in LinearMemBase + 8GB region

o Show that all accesses are of the form:
mem[LinearMemBase + x + y] where x <= 2732 and y <= 232

e Invariant 2: At every function call, the RDI register is LinearMemBase

LinearMemBase

F o

Linear Memaory 4GB

Guard Page 4GB

Verifying the safety of natively-compiled Wasm

e \What does Veriwasm check?
e How does VeriWasm check it?

e How do we know Veriwasm is correct?

Analysis passes

e Each function is analyzed independently
Simplifies analysis
Allows for checking in parallel

(@)

(@)

e Analysis based on abstract interpretation

e Track state of variables in registers and on the stack

Untrusted Was
Module
—>

m

Lucet

Untrusted
x86-64

VeriWasm

» Disassembly

baz
bar

Linear memory
Isolated?

Y

foo

put rbp;
mov rbp, rspj

Stack safe?

Control-flow
safe?

Global variable
Isolated?

Is the
module
safe?

—>

Heap analysis example

foo:
; ASSUME: rdi is LinearMemBase
: TRACK: rax, rbx, ... are Unknown

mov eax, eax;

; TRACK: rax Bounded

mov rsi, [rdi + rax + 0x48];

: ASSERT: rdi 1s LinearMemBase

; ASSERT: rax and 0x48 are Bounded

e o0 0~ o o Bk W =

—
o

call bar;
: ASSERT: rdi 1is LinearMemBase

—
—

—
]

—
8]

Heap analysis example

foo:
; ASSUME: rdi is LinearMemBase
: TRACK: rax, rbx, ... are Unknown

-

mov eax, eax;

; TRACK: rax Bounded

mov rsi, [rdi + rax + 0x48];

: ASSERT: rdi 1s LinearMemBase

; ASSERT: rax and 0x48 are Bounded

e o0 0~ o o Bk W =

—
o

call bar;
: ASSERT: rdi 1is LinearMemBase

—
—

—
]

—
8]

Heap analysis example

foo:
; ASSUME: rdi is LinearMemBase
: TRACK: rax, rbx, ... are Unknown

mov eax, eax,<{mm

; TRACK: rax Bounded

mov rsi, [rdi + rax + 0x48];

: ASSERT: rdi 1s LinearMemBase

; ASSERT: rax and 0x48 are Bounded

e o0 0~ o o Bk W =

—
o

call bar;
: ASSERT: rdi 1is LinearMemBase

—
—

—
]

—
8]

Heap analysis example

foo:
; ASSUME: rdi is LinearMemBase
: TRACK: rax, rbx, ... are Unknown

mov eax, eax;

; TRACK: rax Bounded

mov rsi, [rdi + rax + 0x48]; <=m

: ASSERT: rdi 1s LinearMemBase

; ASSERT: rax and 0x48 are Bounded

e o0 0~ o o Bk W =

—
o

call bar;
: ASSERT: rdi 1is LinearMemBase

—
—

—
]

—
8]

Heap analysis example

foo:
; ASSUME: rdi is LinearMemBase
: TRACK: rax, rbx, ... are Unknown

mov eax, eax;

; TRACK: rax Bounded

mov rsi, [rdi + rax + 0x48];

: ASSERT: rdi 1s LinearMemBase

; ASSERT: rax and 0x48 are Bounded

e o0 0~ o o Bk W =

—
o

call bar; 4=m
: ASSERT: rdi 1is LinearMemBase

—
—

—
]

—
8]

Verifying the safety of natively-compiled Wasm

e \What does Veriwasm check?
e How does VeriwWasm check it?

e How do we know VeriwWasm is correct?

Verification

e We verify in the Cog theorem prover:
o That proving all our subproperties implies isolation
o That our verification algorithm is sound

e Verification uncovered several bugs in our implementation:
o RDI (the register designated to hold the heap base) needs to point to the base of the heap at

each call
o VeriwWasm must compensate for the fact that function calls may not save callee-saved

registers

Evaluating Veriwasm

e \We verified several libraries:

o 2 firefox libraries currently shipped as natively-compiled Wasm
o Spec2006 benchmarks (or subset that we can compile to Wasm)
o Lucet’'s microbenchmark suite

e Verified 101 executables on Fastly’s edge computing platform

e Rediscovered bugs in other SFI systems

Evaluation performance

e Validates ~10 functions a second
e Firefox libraries require less than 3 minutes to validate each

e Fastly binaries require median of 6 minutes 30 seconds

60 -

of Modules
w sy u
=) o =)
1 1

N
o
L

=
o
1

[N

500 1000 1500 2000 2500 3000 3500 4000 4500
Module Validation Time (s)

o
L

Summary

e VeriWasm can verify that Wasm modules compiled to native code are safe.

e It does this by splitting isolation into simpler properties and verifying these
simpler properties

e We verify our verification algorithm using the Coq theorem prover

