
Cerebro: A Layered Data Platform
for Scalable Deep Learning

Yuhao Zhang and Supun Nakandala
CSE Department, University of California, San Diego

Deep Learning

Artificial Neural Networks (ANNs) are
revolutionizing many domains - “Deep Learning”

2

Model Selection

Out-of-box and simple

Complex and requires model
selection (hyper-parameter
tuning + architecture selection)

Model arch.: {VGG, ResNet, InceptionNet, Inception-ResNet ...}
Learning rate: {1e-3, 1e-4, 1e-5, 1e-6 ..}
Regularization: {1e-3, 1e-4, 1e-5, 1e-6 ..}
Batch size: {8, 32, 64, 128 ...}

Non-linear -> trial and error

An engineer may need to attempt hundreds of models before picking the best one*

*Facebook Blog: Introducing FBLearner Flow: Facebooks AI backbone.
https://code.fb.com/ml-applications/introducing-fblearner-flow-facebook-s-ai-backbone

4x4x4x4 = 256 options !

3

https://code.fb.com/ml-applications/introducing-fblearner-flow-facebook-s-ai-backbone

Existing landscape

Computational graph

Model config (Arch.
+ hyper-parms.)

Training Trained model

Training

Best model

Reality

How do I specify a model selection workload?

How do I execute the workload
resource-efficiently?

Multi-query optimization

Config 1 Config 2

Config 3 Config 4
Current landscape is
wasteful of: 4

E. Strubell, A. Ganesh, and A. McCallum. Energy and policy considerations for deep learning in nlp. In ACL, 2019.

of Models GPU Time
Estimated cost (USD)

Cloud compute Electricity

1 120 hrs $52–$175 $5

4789 27 yrs $103k–$350k $9870

4789 models were trained during the R&D of LISA, a state-of-art NLP model

Resources cost: an example

5

Takeaways

1. Model selection deserves to be first-class citizen

2. Usability: need high-level model building APIs

3. Efficiency: need optimizations

Reduce resource/time costs Save money/energy

6

Outline

1. Motivation

2. High-level (layered) Architecture

3. Execution Optimizations

4. Recent and Ongoing Research

5. Summary

7

High-level Architecture

High-level
Model Building

APIs

Optimization
and Scheduling

Layer

Execution
and Storage

Layer

Model Hopper Parallelism (MOP) MOP Hybrids Materialization & Memory Manager

 AutoDiff and SGD Execution Scheduler

Fa
ul

t
To

le
r.

&

 E
la

st
ic

it
y

CEREBRO

CLIs GUIs

Ex
pl

an
at

io
n

En
gi

ne

Direct
Filesystem
Access

…
Cloud NativeDataflow Engines

EC2 EBS Lambda S3

Transfer Learning Ablation Analysis Sequence Analysis …

…

Multi-Task Batching

Hyperparameter Tuning Architecture Search Feature Transfer Grouped ML M
et

ad
at

a
M

an
ag

er

8

Outline

1. Motivation

2. High-level (layered) Architecture

3. Execution Optimizations

a. Limitations of Existing Approaches

b. Our Solution: Model Hopper Parallelism (MOP)

4. Recent and Ongoing Research

5. Summary

9

Existing Approaches

Existing systems to speed up model selection aim to exploit the parallelism of a
cluster to raise throughput.

Task Parallelism
Multiple workers each training

a single model

Data Parallelism
Single model training on

multiple workers

But all such systems suffer from major inefficiency or other.

We are given three things:

Training Dataset Training Configurations Compute Cluster

10

Task Parallelism (e.g., Ray, Dask, Celery)

11

Task Parallelism (e.g., Ray, Dask, Celery)

11

Task Parallelism (e.g., Ray, Dask, Celery)

11

Task Parallelism (e.g., Ray, Dask, Celery)

Con: Wastes storage/memory (or network)
11

Existing Approaches

Existing systems to speed up model selection aim to exploit the parallelism of a
cluster to raise throughput.

Task Parallelism
Multiple workers each training

a single model

Data Parallelism
Single model training on

multiple workers

But all such systems suffer from major inefficiency or other.

We are given three things:

Training Dataset Training Configurations Compute Cluster

12

Data Parallelism (e.g., Parameter Server, Horovod)

13

Data Parallelism (e.g., Parameter Server, Horovod)

13

Data Parallelism (e.g., Parameter Server, Horovod)

13

Data Parallelism (e.g., Parameter Server, Horovod)

13

Data Parallelism (e.g., Parameter Server, Horovod)

13

Data Parallelism (e.g., Parameter Server, Horovod)

13

Data Parallelism (e.g., Parameter Server, Horovod)

Update after every mini-batch:

E.g., TensorFlow Parameter Server,
 Horovod
Con: High communication cost

13

?
+

14

Outline

1. Motivation

2. High-level (layered) Architecture

3. Execution Optimizations

a. Limitations of Existing Approaches

b. Our Solution: Model Hopper Parallelism (MOP)

4. Recent and Ongoing Research

5. Summary

15

16

Model Hopper Parallelism (MOP)

… Assumption:
n >= m

17

Model Hopper Parallelism (MOP)

… Assumption:
n >= m

17

Model Hopper Parallelism (MOP)

… Assumption:
n >= m

17

Model Hopper Parallelism (MOP)

… Assumption:
n >= m

17

Model Hopper Parallelism (MOP)

… Assumption:
n >= m

17

Model Hopper Parallelism (MOP)

… Assumption:
n >= m

Complete single
scan over the
partition

17

Model Hopper Parallelism (MOP)

… Assumption:
n >= m

17

Model Hopper Parallelism (MOP)

… Assumption:
n >= m

17

Model Hopper Parallelism (MOP)

… Assumption:
n >= m

17

Model Hopper Parallelism (MOP)

… Assumption:
n >= m

17

Model Hopper Parallelism (MOP)

… Assumption:
n >= m

17

Model Hopper Parallelism (MOP)

… Assumption:
n >= m

17

Model Hopper Parallelism (MOP)

… Assumption:
n >= m

17

Model Hopper Parallelism (MOP)

… Assumption:
n >= m

Complete one scan
over the entire dataset

17

Model Hopper Parallelism (MOP)

… Assumption:
n >= m

Complete one scan
over the entire dataset

17

Model Hopper Parallelism (MOP)

MOP exploits the robustness of deep net training to the data visit order
at partition level.

MOP is the most resource-efficient approach: over 10X storage/memory
savings, minimum communication overheads.

Different configurations see the data in different yet sequential orders:
best convergence efficiency, reproducible.

Detailed experimental evaluation results can be found in our VLDB 2020 paper. 18

Outline

1. Motivation

2. High-level (layered) Architecture

3. Execution Optimizations

4. Recent and Ongoing Research

a. Feature Transfer and Transfer Learning

b. Integration with Other Execution Backends

5. Summary

19

Feature Transfer and Transfer Learning

Goal: Enable feature transfer from pre-trained deep net models (e.g.,
BERT, GPT) for downstream analytics tasks.

Problem: Explore features from multiple layers before picking the best one.
Wasted computations and storage/memory blowups!

Our
Approach:

Combine MOP with feature transfer-aware execution strategies that
intelligently stages the computations.

20

Outline

1. Motivation

2. High-level (layered) Architecture

3. Execution Optimizations

4. Recent and Ongoing Research

a. Feature Transfer and Transfer Learning

b. Integration with Other Execution Backends

Ongoing work focuses on
cloud native systems

21

Summary

Cerebro: A Layered Data Platform for Scalable Deep Learning.

Project Web Page: https://adalabucsd.github.io/cerebro.html

Thank You!

At the core, Cerebro uses Model Hopper Parallelism, a novel hybrid of task- and
data-parallelism, that exploits the properties of deep net training.

Ongoing research focuses on integration with other execution backends and
supporting more deep learning workloads such as transfer learning.

22

Outline

1. Motivation

2. High-level (layered) Architecture

3. Execution Optimizations

4. Recent and Ongoing Research

5. Summary

Outline

1. Motivation

2. High-level (layered) Architecture

3. Execution Optimizations

4. Recent and Ongoing Research

5. Summary

Outline

1. Motivation

2. High-level (layered) Architecture

3. Execution Optimizations

a. Existing Approaches

b. Our Solution: Model Hopper Parallelism (MOP)

c. Experimental Results

4. Recent and Ongoing Research

5. Summary

Experimental Workload

Experimental Results

More results including different datasets and drill-down experiments can be found in our VLDB 2020 paper.

Integration with Other Execution Backends

Problem: How can we emulate MOP on these systems with no or very little
changes to those systems?

Goal: Integrate with DB/Dataflow/Cloud Native systems for easy adoption
and for exploiting the auxiliary capabilities of those systems.

Our
Approach:

Explore the efficiency tradeoffs of alternatives for emulating MOP.

UDF-based Approach Data Export-based Approach ?

