# Cerebro: A Layered Data Platform for Scalable Deep Learning

Yuhao Zhang and Supun Nakandala CSE Department, University of California, San Diego

#### **Deep Learning**

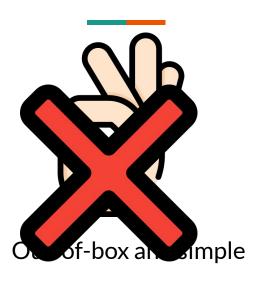
Artificial Neural Networks (ANNs) are revolutionizing many domains - "Deep Learning"

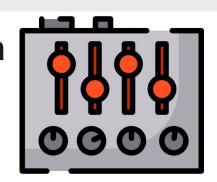




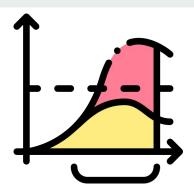


#### **Model Selection**





Complex and requires model selection (hyper-parameter tuning + architecture selection)



Non-linear -> trial and error

Model arch.: {VGG, ResNet, InceptionNet, Inception-ResNet ...}

Learning rate: {1e-3, 1e-4, 1e-5, 1e-6 ..}

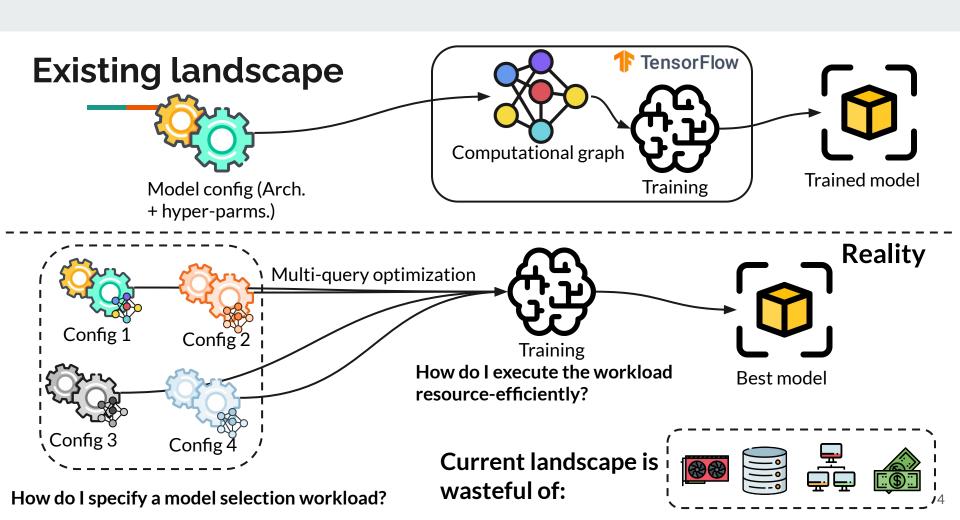
Regularization: {1e-3, 1e-4, 1e-5, 1e-6 ..}

Batch size: {8, 32, 64, 128 ...}

4x4x4x4 = 256 options!

An engineer may need to attempt hundreds of models before picking the best one\*

<sup>\*</sup>Facebook Blog: Introducing FBLearner Flow: Facebooks AI backbone. https://code.fb.com/ml-applications/introducing-fblearner-flow-facebook-s-ai-backbone



#### Resources cost: an example

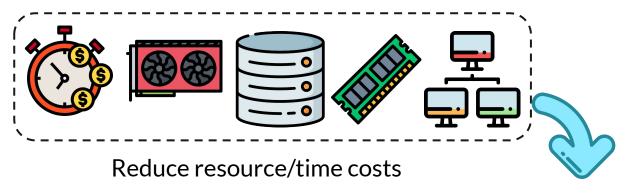
4789 models were trained during the R&D of LISA, a state-of-art NLP model

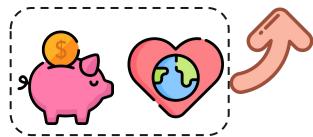
| # of Models | GPU Time | Estimated cost (USD) |             |
|-------------|----------|----------------------|-------------|
|             |          | Cloud compute        | Electricity |
| 1           | 120 hrs  | \$52-\$175           | \$5         |
| 4789        | 27 yrs   | \$103k-\$350k        | \$9870      |

E. Strubell, A. Ganesh, and A. McCallum. Energy and policy considerations for deep learning in nlp. In ACL, 2019.

#### **Takeaways**

- 1. Model selection deserves to be first-class citizen
- 2. Usability: need high-level model building APIs
- 3. Efficiency: need optimizations



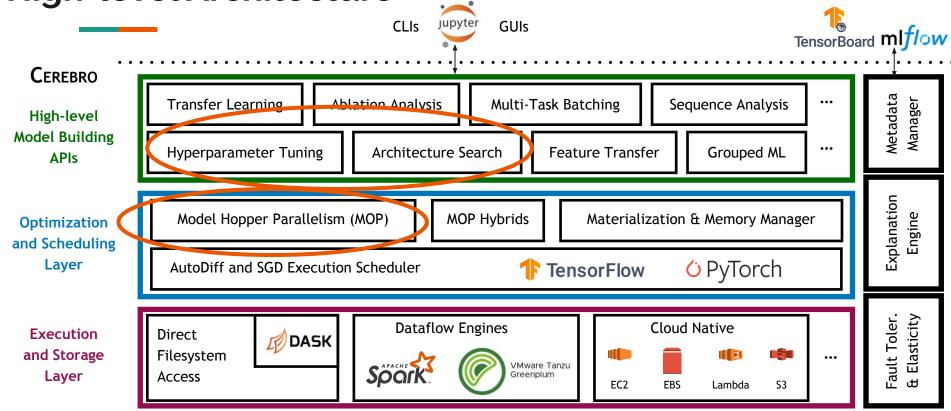


Save money/energy

#### **Outline**

- 1. Motivation
- 2. High-level (layered) Architecture
- 3. Execution Optimizations
- 4. Recent and Ongoing Research
- 5. Summary

#### **High-level Architecture**



#### **Outline**

- 1. Motivation
- 2. High-level (layered) Architecture
- 3. Execution Optimizations
  - a. Limitations of Existing Approaches
  - b. Our Solution: Model Hopper Parallelism (MOP)
- 4. Recent and Ongoing Research
- 5. Summary

#### **Existing Approaches**

**Training Dataset** 

Training Configurations

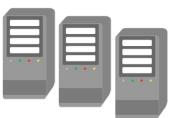
Compute Cluster

We are given three things:









Existing systems to speed up model selection aim to exploit the parallelism of a cluster to raise throughput.

But all such systems suffer from major inefficiency or other.

#### Task Parallelism

Multiple workers each training a single model

#### **Data Parallelism**

Single model training on multiple workers

Configurations



-----



Full Training Dataset



Mini-batch (small batch of examples)







Node 2



Node m



C1

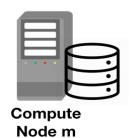


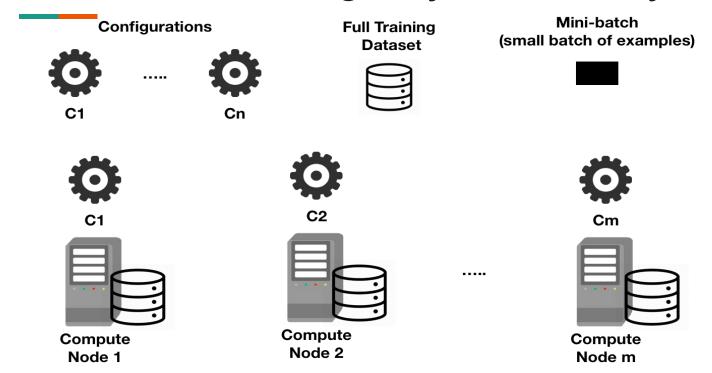
Mini-batch (small batch of examples)

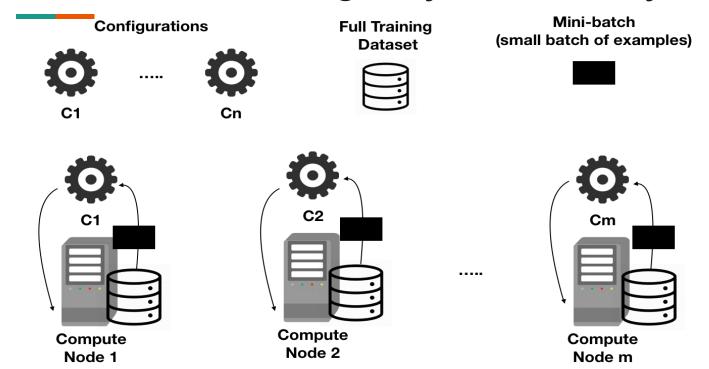












**Con:** Wastes storage/memory (or network)

#### **Existing Approaches**

**Training Dataset** 

Training Configurations

Compute Cluster

We are given three things:









Existing systems to speed up model selection aim to exploit the parallelism of a cluster to raise throughput.

But all such systems suffer from major inefficiency or other.

#### **Task Parallelism**

Multiple workers each training a single model

#### **Data Parallelism**

Single model training on multiple workers



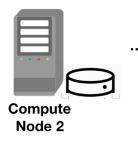


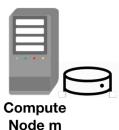




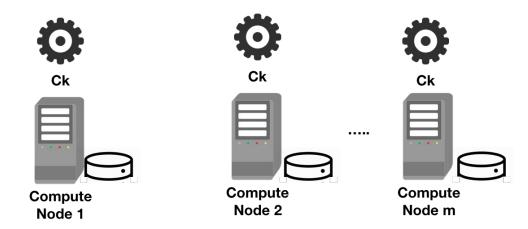




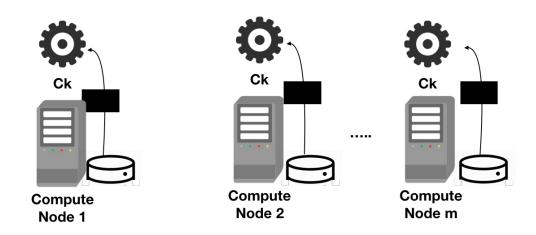


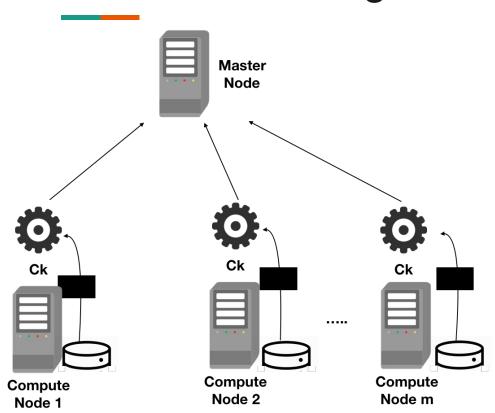


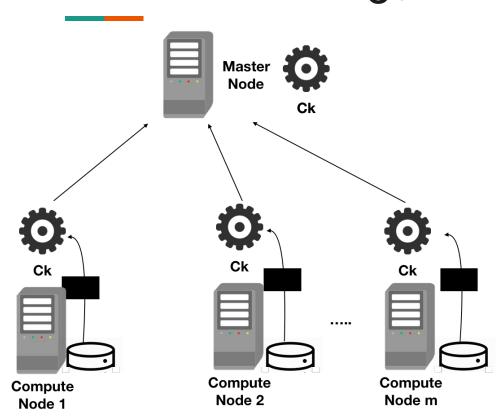


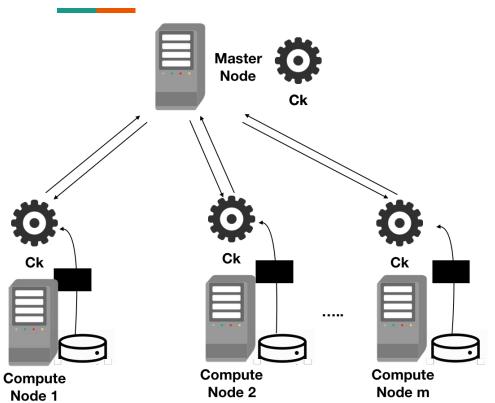












#### **Update after every mini-batch:**

E.g., TensorFlow Parameter Server, Horovod

**Con:** High communication cost

## Task Parallelism

**Pro:** High throughput

Con: Low data scalability

Con: Storage/memory wastage





#### **Data Parallelism**

Pro: High data scalability

Con: Low throughput

**Con:** High communication cost

#### **Outline**

- 1. Motivation
- 2. High-level (layered) Architecture
- 3. Execution Optimizations
  - a. Limitations of Existing Approaches
  - b. Our Solution: Model Hopper Parallelism (MOP)
- 4. Recent and Ongoing Research
- 5. Summary

#### Task Parallelism

**Pro:** High throughput

Con: Low data scalability

Con: Storage/memory wastage



#### Data Parallelism

Pro: High data scalability

Con: Low throughput

**Con:** High communication cost



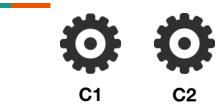
#### Model Hopper Parallelism (Cerebro)

**Pro:** High throughput

Pro: High data scalability

Pro: Low communication cost

Pro: No storage/memory wastage







Assumption: n >= m





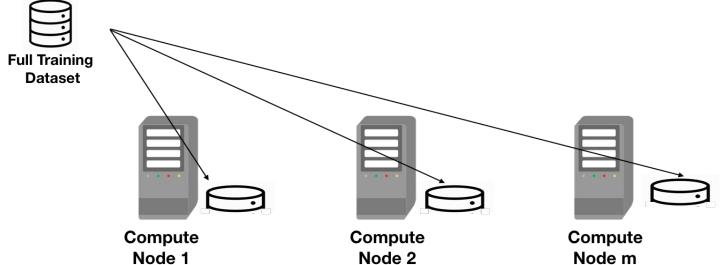


Compute Node 2



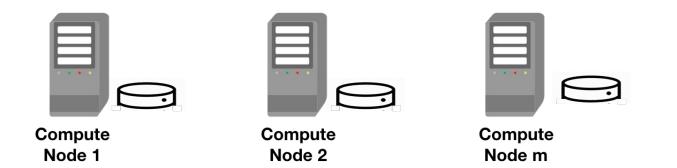
Compute Node m

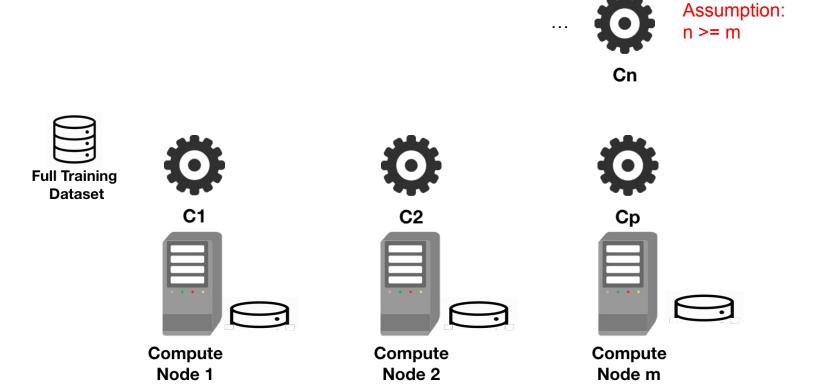


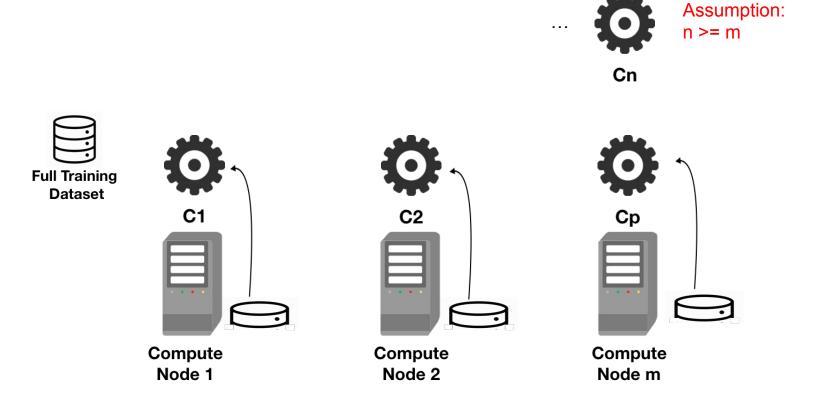


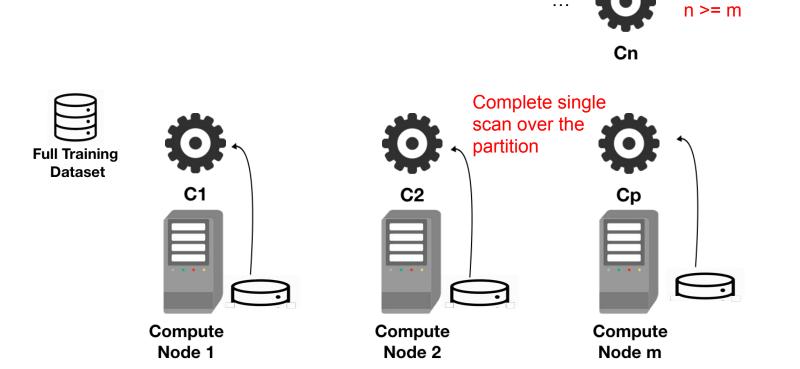




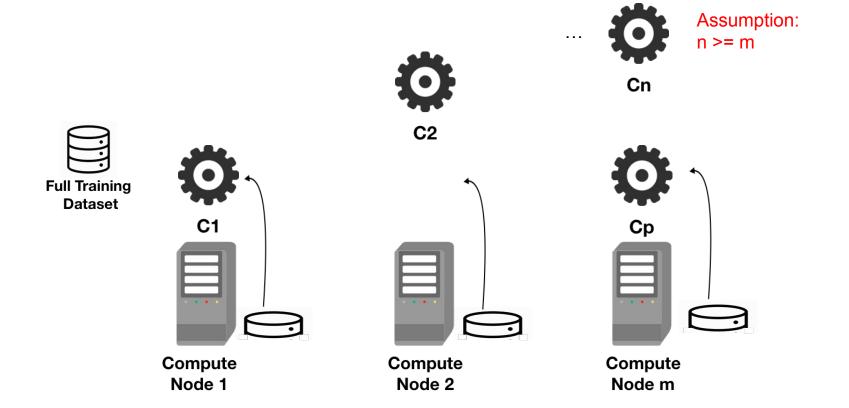


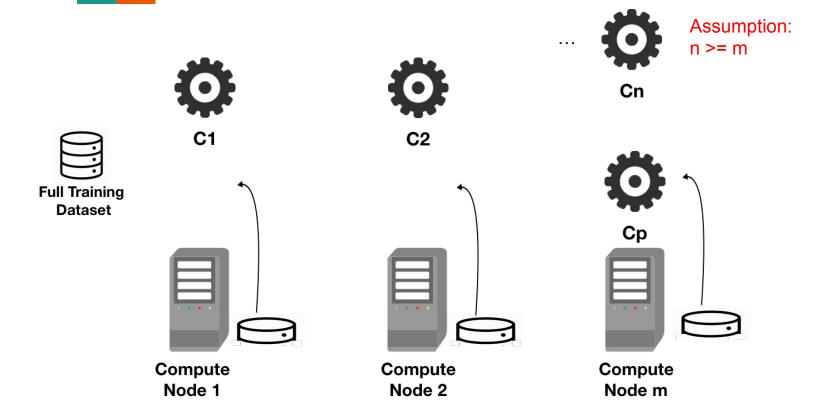


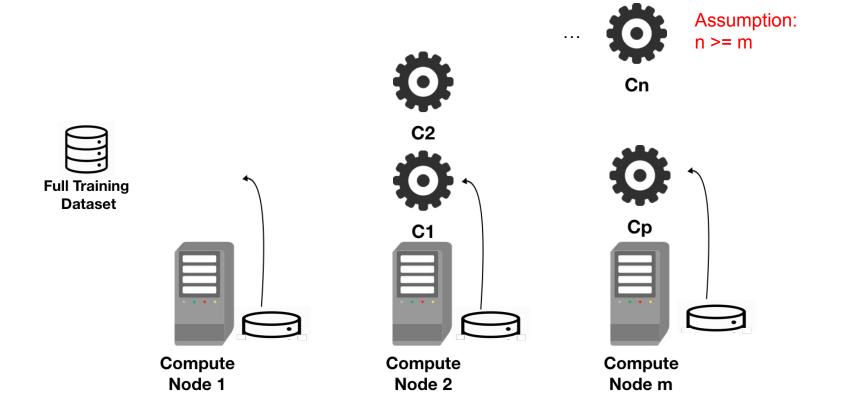


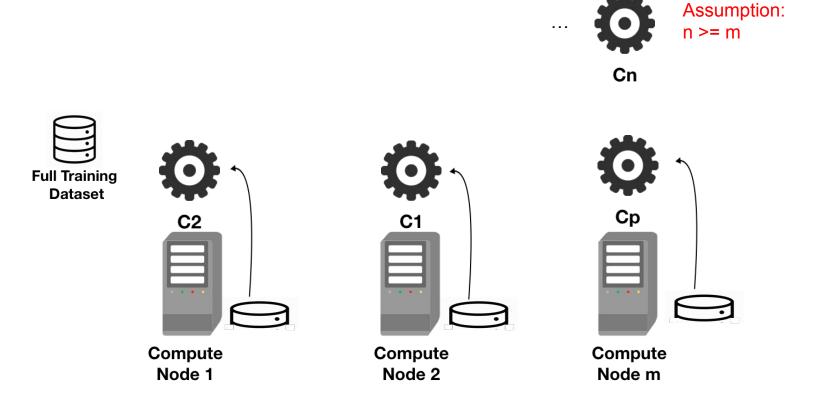


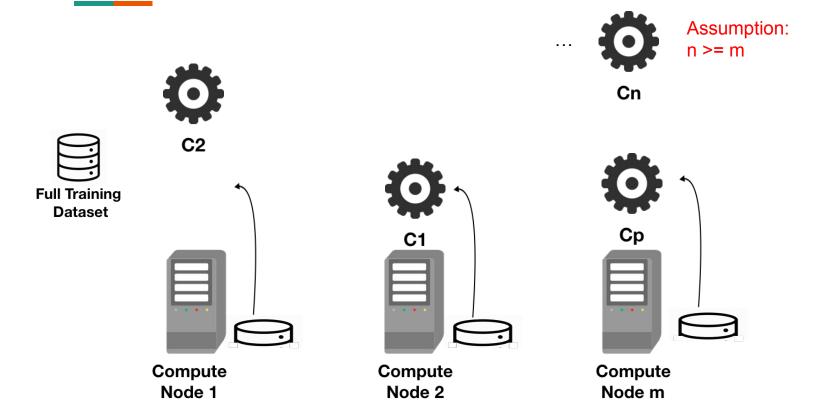
Assumption:

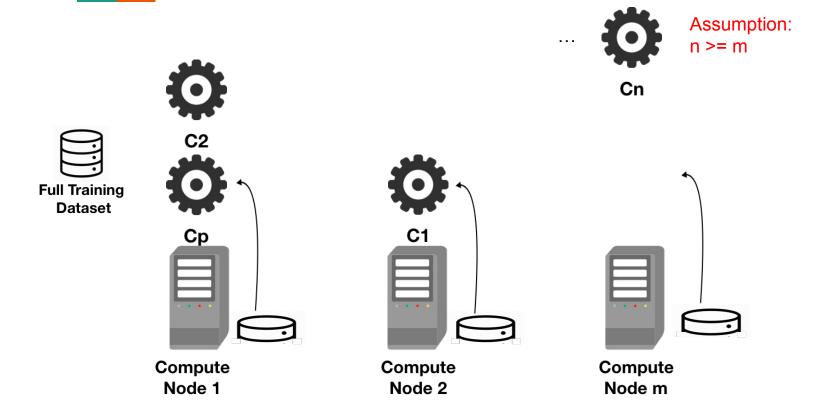


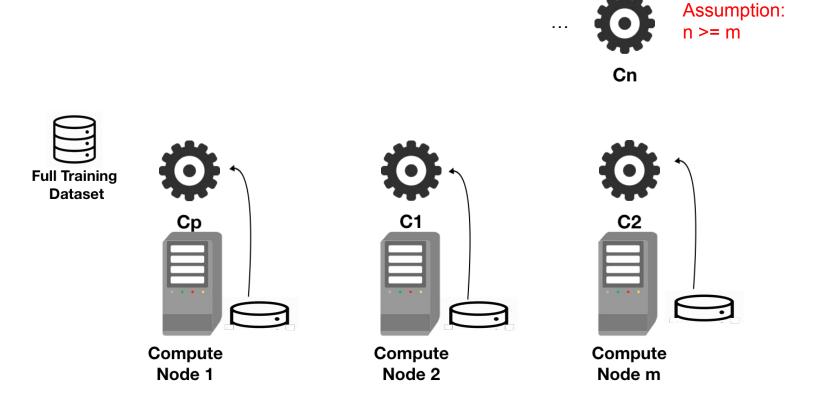












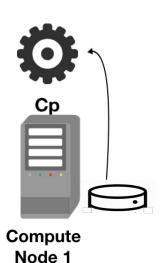
Complete one scan over the entire dataset

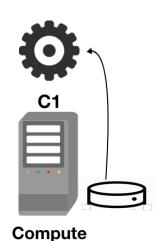




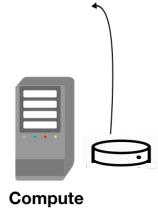
Assumption: n >= m







Node 2

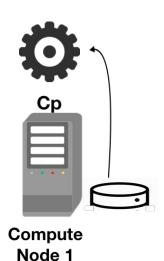


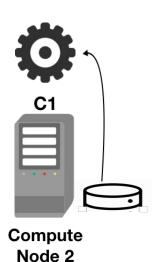
Complete one scan over the entire dataset

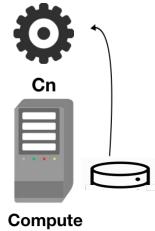


Assumption: n >= m









MOP exploits the robustness of deep net training to the data visit order at partition level.

MOP is the most resource-efficient approach: over 10X storage/memory savings, minimum communication overheads.

Different configurations see the data in different yet sequential orders: best convergence efficiency, reproducible.

- 1. Motivation
- 2. High-level (layered) Architecture
- 3. Execution Optimizations
- 4. Recent and Ongoing Research
  - a. Feature Transfer and Transfer Learning
  - b. Integration with Other Execution Backends
- 5. Summary

## **Feature Transfer and Transfer Learning**

Enable feature transfer from pre-trained deep net models (e.g., Goal:

BERT, GPT) for downstream analytics tasks.







**Problem:** Explore features from multiple layers before picking the best one.

Wasted computations and storage/memory blowups!

Combine MOP with feature transfer-aware execution strategies that Our Approach:

intelligently stages the computations.

- 1. Motivation
- 2. High-level (layered) Architecture
- 3. Execution Optimizations
- 4. Recent and Ongoing Research
  - a. Feature Transfer and Transfer Learning
  - b. Integration with Other Execution Backends



Ongoing work focuses on cloud native systems





### **Summary**

Cerebro: A Layered Data Platform for Scalable Deep Learning.

At the core, Cerebro uses Model Hopper Parallelism, a novel hybrid of task- and data-parallelism, that exploits the properties of deep net training.

Ongoing research focuses on integration with other execution backends and supporting more deep learning workloads such as transfer learning.

Thank You!

- 1. Motivation
- 2. High-level (layered) Architecture
- 3. Execution Optimizations
- 4. Recent and Ongoing Research
- 5. Summary

#### 1. Motivation

- 2. High-level (layered) Architecture
- 3. Execution Optimizations
- 4. Recent and Ongoing Research
- 5. Summary

- 1. Motivation
- 2. High-level (layered) Architecture
- 3. Execution Optimizations
  - a. Existing Approaches
  - b. Our Solution: Model Hopper Parallelism (MOP)
  - c. Experimental Results
- 4. Recent and Ongoing Research
- 5. Summary

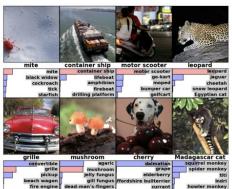
## **Experimental Workload**

| Dataset                | ImageNet<br>(250 GB)                                               |  |
|------------------------|--------------------------------------------------------------------|--|
| Cluster                | 8 Node Cluster. P100 GPU, 192 GB<br>RAM, 32 Cores, 10 Gbps Network |  |
| Model<br>Architectures | VGG16, ResNet50                                                    |  |
| Learning Rates         | 0.0001, 0.00001                                                    |  |
| L2 Reg.<br>Coefficient | 0.0001, 0.00001                                                    |  |
| Batch Sizes            | 32, 256                                                            |  |

#### ImageNet Challenge



- 1,000 object classes (categories).
- Images:
  - o 1.2 M train
  - o 100k test.



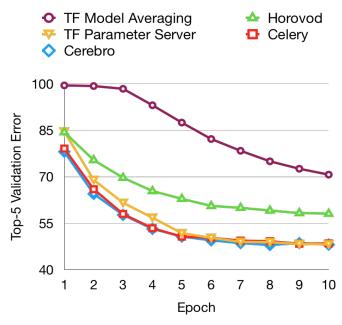
16 configurations trained for 10 epochs

### **Experimental Results**

#### **Runtime Efficiency**

| System                              | Runtime<br>(hrs) | Storage<br>Footprint (GB) |
|-------------------------------------|------------------|---------------------------|
| TF Parameter Server (Data Parallel) | 190.0            | 250                       |
| Horovod<br>(Data Parallel)          | 54.2             | 250                       |
| TF Model Averaging (Data Parallel)  | 19.70            | 250                       |
| Celery<br>(Task Parallel)           | 17.2             | 2000                      |
| Cerebro<br>(MOP)                    | 17.7             | 250                       |

#### **Convergence Efficiency**



More results including different datasets and drill-down experiments can be found in our VLDB 2020 paper.

### **Integration with Other Execution Backends**

Goal: Integrate with DB/Dataflow/Cloud Native systems for easy adoption

and for exploiting the auxiliary capabilities of those systems.

**Problem:** How can we emulate MOP on these systems with no or very little

changes to those systems?

Our

Approach:

Explore the efficiency tradeoffs of alternatives for emulating MOP.







