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Deep Learning

Artificial Neural Networks (ANNs) are 
revolutionizing many domains - “Deep Learning”
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Model Selection

Out-of-box and simple

Complex and requires model 
selection (hyper-parameter 
tuning + architecture selection)

Model arch.: {VGG, ResNet, InceptionNet, Inception-ResNet ...}
Learning rate: {1e-3, 1e-4, 1e-5, 1e-6 ..}
Regularization: {1e-3, 1e-4, 1e-5, 1e-6 ..}
Batch size: {8, 32, 64, 128 ...}

Non-linear -> trial and error

An engineer may need to attempt hundreds of models before picking the best one*

*Facebook Blog: Introducing FBLearner Flow: Facebooks AI backbone. 
https://code.fb.com/ml-applications/introducing-fblearner-flow-facebook-s-ai-backbone 

4x4x4x4 = 256 options !
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Existing landscape

Computational graph

Model config (Arch. 
+ hyper-parms.)

Training Trained model

Training

Best model

Reality

How do I specify a model selection workload?

How do I execute the workload 
resource-efficiently?

Multi-query optimization

Config 1 Config 2

Config 3 Config 4
Current landscape is 
wasteful of: 4



E. Strubell, A. Ganesh, and A. McCallum. Energy and policy considerations for deep learning in nlp. In ACL, 2019.

# of Models GPU Time
Estimated cost (USD)

Cloud compute Electricity

1 120 hrs  $52–$175 $5

4789 27 yrs  $103k–$350k $9870

4789 models were trained during the R&D of LISA, a state-of-art NLP model

Resources cost: an example
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Takeaways

1. Model selection deserves to be first-class citizen

2. Usability: need high-level model building APIs

3. Efficiency: need optimizations

Reduce resource/time costs Save money/energy
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High-level Architecture
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Existing Approaches

Existing systems to speed up model selection aim to exploit the parallelism of a 
cluster to raise throughput.

Task Parallelism
Multiple workers each training 

a single model

Data Parallelism
Single model training on 

multiple workers

But all such systems suffer from major inefficiency or other.

We are given three things:

Training Dataset Training Configurations Compute Cluster
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Task Parallelism (e.g., Ray, Dask, Celery)
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Task Parallelism (e.g., Ray, Dask, Celery)
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Task Parallelism (e.g., Ray, Dask, Celery)

11



Task Parallelism (e.g., Ray, Dask, Celery)

Con: Wastes storage/memory (or network)
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Data Parallelism (e.g., Parameter Server, Horovod)
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Data Parallelism (e.g., Parameter Server, Horovod)
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Data Parallelism (e.g., Parameter Server, Horovod)

Update after every mini-batch:

E.g., TensorFlow Parameter Server,
          Horovod
Con: High communication cost
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Model Hopper Parallelism (MOP)

… Assumption:
n >= m
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Model Hopper Parallelism (MOP)
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Complete single 
scan over the 
partition
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Model Hopper Parallelism (MOP)
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Complete one scan 
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Model Hopper Parallelism (MOP)
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Model Hopper Parallelism (MOP)

MOP exploits the robustness of deep net training to the data visit order 
at partition level.

MOP is the most resource-efficient approach: over 10X storage/memory 
savings, minimum communication overheads.

Different configurations see the data in different yet sequential orders: 
best convergence efficiency, reproducible.

Detailed experimental evaluation results can be found in our VLDB 2020 paper. 18
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Feature Transfer and Transfer Learning

Goal: Enable feature transfer from pre-trained deep net models (e.g., 
BERT, GPT) for downstream analytics tasks.

Problem: Explore features from multiple layers before picking the best one. 
Wasted computations and storage/memory blowups!

Our 
Approach: 

Combine MOP with feature transfer-aware execution strategies that 
intelligently stages the computations.
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cloud native systems
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Summary

Cerebro: A Layered Data Platform for Scalable Deep Learning. 

Project Web Page: https://adalabucsd.github.io/cerebro.html

Thank You!

At the core, Cerebro uses Model Hopper Parallelism, a novel hybrid of task- and 
data-parallelism, that exploits the properties of deep net training.

Ongoing research focuses on integration with other execution backends and 
supporting more deep learning workloads such as transfer learning.
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Experimental Workload



Experimental Results

More results including different datasets and drill-down experiments can be found in our VLDB 2020 paper.



Integration with Other Execution Backends

Problem: How can we emulate MOP on these systems with no or very little 
changes to those systems?

Goal: Integrate with DB/Dataflow/Cloud Native systems for easy adoption 
and for exploiting the auxiliary capabilities of those systems.

Our 
Approach: 

Explore the efficiency tradeoffs of alternatives for emulating MOP. 

UDF-based Approach Data Export-based Approach ?


