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• Network is getting faster (e.g., 200 Gbps, sub-600 ns)


• Application need for large memory + memory-capacity wall


➡ Remote/disaggregated memory


• Applications access (large) non-local memory
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Disaggregated Persistent Memory?
PM: byte-addressable, persistent, memory-like perf

Disaggregating PM (DPM) 

• Enjoy disaggregation’s management, scalability, utilization benefits


• Easy way to integrate PM into current datacenters

Use existing disaggregated systems for DPM? 

• Disaggregated storage: software stack too slow for fast PM


• Disaggregated memory: do not provide data reliability
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Passive Disaggregated PM (pDPM)
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pDPM 

• Passive PM devices with NIC and PM


• Accessible only via network


Why pDPM? 

• Low CapEx and OpEx


• Easy to add, remove, and change


• No scalability bottleneck at storage nodes


• Research value in exploring new design area


Why possible now? Fast RDMA network + CPU bypassing
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Without processing power at PM, 
where to process and manage data?
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Passive Disaggregated PM (pDPM) Systems

• We design and implement three pDPM key-value stores


• At computer nodes


• At global coordinator


• A hybrid approach


• Carry out extensive experiments: performance, scalability, costs


• Clover is the best pDPM model: perf similar to active DPM, but lower costs


• Discovered tradeoffs between passive and active DPMs
12
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Overall Architecture 

• CNs access and manage DNs directly via one-sided RDMA


• Both data and control planes run within CNs

Challenges 

• How to manage DN space?


• How to coordinate concurrent reads/writes across CNs?
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The central coordinator


• Manages DN space


• Serializes CNs accesses with local locking


CNs communicate with the coordinator through two-sided RDMA


Coordinator accesses DNs through one-sided RDMA DN
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…

CPUNIC
DRAMPM

Coordinator

…

DN DN

CN CN

Easier to manage DNs and 
coordinate concurrent accesses Two-sided RDMA

One-sided RDMA

pDPM-Central: A Central Coordinator between CNs and DNs
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Where to process and manage data?

pDPM-Direct pDPM-CentralClover
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High-level idea: separate data and metadata plane 

• Separate locations


• Different communication methods


• Different management strategy
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• CNs directly access DNs with one-sided RDMA
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Main Challenge in Data Plane:


How to efficiently support concurrent data accesses from CNs to DNs?
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Our approach


• Lock-free data structures to increase scalability


• Optimizations to reduce read/write RTTs

Main Challenge in Data Plane:
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Evaluation Setup
• Systems evaluated


• pDPM Systems: pDPM-Direct, pDPM-Central, Clover


• Non-disaggregated Systems: Octopus, ATC’17 and Hotpot, SoCC’17


• Two-sided RDMA KVS: HERD, SIGCOMM’14, ported HERD-BF (Bluefield)


• Testbed


• 14 servers, each has an Intel Xeon E5-2620, 128 GB DRAM, and 100 Gpbs 
Mellanox ConnectX-4 NIC, all connected via a 100 Gpbs IB switch


• Mellanox BlueField SmartNIC for HERD 27
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Clover is cheap to build and run



Conclusion

• pDPM offers deployment, cost, and performance benefits


• Separating data and metadata is crucial


• Future system could benefit from a hybrid hardware model
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Thank you! 
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Backup Slides
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pDPM-Direct/Central RW Protocols
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Where is the key-value hashtable?

• pDPM-Direct: each CN has an identical mapping table


• pDPM-Central: each CN performs CN->coordinator mapping. Each 
coordinator has a full identical mapping table


• Clover: MSs have full mapping table, each CN caches a portion of it
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Possible Questions

• If DPM-Central has multiple coordinates, cannot it scale?


• Why not use read-after-write to ensure remote persistency?


• Where is the key-> entry hashtable?


• The whole table is at MS, each CN caches a portion of it?
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