
Disaggregating Persistent Memory
and Controlling Them Remotely:

An Exploration of Passive
Disaggregated Key-Value Stores

Shin-Yeh Tsai, Yizhou Shan, Yiying Zhang

Resource Disaggregation
Break monolithic servers into network-attached resource pools

2

3

Resource Disaggregation

3

Network

Break monolithic servers into network-attached resource pools

3

Resource Disaggregation

3

Network

Better manageability, independent scaling, tight resource packing

Break monolithic servers into network-attached resource pools

3

Resource Disaggregation

3

Network LegoOS

Berkeley Firebox

Better manageability, independent scaling, tight resource packing

Break monolithic servers into network-attached resource pools

Disaggregated Storage

4

Compute
Pool

D
at

ac
en

te
r N

et
w

or
k

Storage
Pool

Storage
Pool

Compute
Pool

Separate compute and storage pools

• Manage and scale independently

A common practice in datacenters and clouds

Disaggregated Storage

4

Compute
Pool

D
at

ac
en

te
r N

et
w

or
k

Storage
Pool

Storage
Pool

Compute
Pool

Separate compute and storage pools

• Manage and scale independently

A common practice in datacenters and clouds

Disaggregated Storage

4

Compute
Pool

D
at

ac
en

te
r N

et
w

or
k

Storage
Pool

Storage
Pool

Compute
Pool

Separate compute and storage pools

• Manage and scale independently

A common practice in datacenters and clouds

• Network is getting faster (e.g., 200 Gbps, sub-600 ns)

• Application need for large memory + memory-capacity wall

➡ Remote/disaggregated memory

• Applications access (large) non-local memory

5

Compute
Pool

RD
M

A

Memory
Pool

Memory
Pool

Compute
Pool

FaRM

Disaggregated Memory

Memory Blades, ISCA'09
NAM-DB, VLDB'17
ZombieLand, EuroSys'18
StRoM, EuroSys'20HTC-DC

6

Disaggregated Persistent Memory?

6

Disaggregated Persistent Memory?
PM: byte-addressable, persistent, memory-like perf

6

Compute
Pool

RD
M

A

PM
Pool

PM
Pool

Compute
Pool

Disaggregated Persistent Memory?
PM: byte-addressable, persistent, memory-like perf

Disaggregating PM (DPM)

• Enjoy disaggregation’s management, scalability, utilization benefits

• Easy way to integrate PM into current datacenters

6

Compute
Pool

RD
M

A

PM
Pool

PM
Pool

Compute
Pool

Disaggregated Persistent Memory?
PM: byte-addressable, persistent, memory-like perf

Disaggregating PM (DPM)

• Enjoy disaggregation’s management, scalability, utilization benefits

• Easy way to integrate PM into current datacenters

Use existing disaggregated systems for DPM?

• Disaggregated storage: software stack too slow for fast PM

• Disaggregated memory: do not provide data reliability

7

Spectrum of Datacenter PM Deploy Models

7

Spectrum of Datacenter PM Deploy Models

Non-Disaggregation

Compute

Remote PM

Compute

Remote PM

Local PM

Hotpot, SoCC’17

Octopus, ATC’17

Remote Regions, ATC’18

Mgmt

Local PM
Mgmt

7

Spectrum of Datacenter PM Deploy Models

Non-Disaggregation Active Disaggregation

Compute

Remote PM

Compute

Remote PM

Mgmt

Mgmt

Remote PM

Remote PM

Compute

Compute

Local PM

Hotpot, SoCC’17

Octopus, ATC’17

Remote Regions, ATC’18

HERD, SIGCOMM’14

Decibel, NSDI’17

HyperLoop, SIGCOMM’18

Snowflake, NSDI’20

Mgmt

Local PM
Mgmt

7

Spectrum of Datacenter PM Deploy Models

Non-Disaggregation Active Disaggregation

Traditional Storage Systems

Compute

Remote PM

Compute

Remote PM

Mgmt

Mgmt

Remote PM

Remote PM

Compute

Compute

Local PM

Hotpot, SoCC’17

Octopus, ATC’17

Remote Regions, ATC’18

HERD, SIGCOMM’14

Decibel, NSDI’17

HyperLoop, SIGCOMM’18

Snowflake, NSDI’20

Mgmt

Local PM
Mgmt

7

Spectrum of Datacenter PM Deploy Models

Non-Disaggregation Active Disaggregation Passive Disaggregation

Traditional Storage Systems Unexplored Area!

Compute

Remote PM

Compute

Remote PM

Mgmt

Mgmt

Remote PM

Remote PM

Compute

Compute
Mgmt

Remote PM

Remote PMCompute
Compute

Mgmt

Local PM

Hotpot, SoCC’17

Octopus, ATC’17

Remote Regions, ATC’18

HERD, SIGCOMM’14

Decibel, NSDI’17

HyperLoop, SIGCOMM’18

Snowflake, NSDI’20

Mgmt

Local PM
Mgmt

7

Spectrum of Datacenter PM Deploy Models

Non-Disaggregation Active Disaggregation Passive Disaggregation

Traditional Storage Systems Unexplored Area!

Compute

Remote PM

Compute

Remote PM

Mgmt

Mgmt

Remote PM

Remote PM

Compute

Compute
Mgmt

Remote PM

Remote PMCompute
Compute

Mgmt

Local PM

- low resource util

- inflexible

+ flexible

+ good performance

+ flexible

+ smaller failure domain

Mgmt

Local PM
Mgmt

7

Spectrum of Datacenter PM Deploy Models

Non-Disaggregation Active Disaggregation Passive Disaggregation

Traditional Storage Systems Unexplored Area!

Compute

Remote PM

Compute

Remote PM

Mgmt

Mgmt

Remote PM

Remote PM

Compute

Compute
Mgmt

Remote PM

Remote PMCompute
Compute

Mgmt

Local PM

- low resource util

- inflexible

- high CAPEX and OPEX

- storage node: scalability bottleneck

+ flexible

+ good performance

+ flexible

+ smaller failure domain
+ low cost

* performance?

Mgmt

Local PM
Mgmt

Passive Disaggregated PM (pDPM)

8

pDPM

• Passive PM devices with NIC and PM

• Accessible only via network

Why pDPM?

• Low CapEx and OpEx

• Easy to add, remove, and change

• No scalability bottleneck at storage nodes

• Research value in exploring new design area

Why possible now? Fast RDMA network + CPU bypassing

Compute

Mgmt

Compute

Mgmt

PMNIC

PMNIC

9

Without processing power at PM,
where to process and manage data?

10

Spectrum of Datacenter PM Deploy Models

No Disaggregation Active Disaggregation Passive Disaggregation

Traditional Storage Systems Unexplored Area!

Compute

Remote PM

Compute

Remote PM

Mgmt

Mgmt

Remote PM

Remote PM

Compute

Compute
Mgmt

Remote PM

Remote PMCompute
Compute

Mgmt

Local PM
Mgmt

Local PM
Mgmt

11

Non Disaggregation Active Disaggregation Passive Disaggregation

Spectrum of Datacenter PM Deploy Models

11

Non Disaggregation Active Disaggregation Passive Disaggregation

Where to process and manage data?

Spectrum of Datacenter PM Deploy Models

11

Non Disaggregation Active Disaggregation Passive Disaggregation

Where to process and manage data?
At compute nodes

DN DN

CN CN

Spectrum of Datacenter PM Deploy Models

control

data access

control

data access

CN: Compute Node, DN: Data Node with PM

11

Non Disaggregation Active Disaggregation Passive Disaggregation

Where to process and manage data?
At compute nodes At a coordinator

DN DN

CN CN

CN CN

Spectrum of Datacenter PM Deploy Models

control

data access

control

data access

Coordinator
control coordinate

access

DN DN

CN: Compute Node, DN: Data Node with PM

data access data access

11

Non Disaggregation Active Disaggregation Passive Disaggregation

Where to process and manage data?
At compute nodes At a coordinatorA hybrid approach

Metadata
Server

DN DN DN DN

CN CN

CNCN

CN CN

Spectrum of Datacenter PM Deploy Models

control

data access

control

data access

Coordinator
control coordinate

access

control

data access data access

DN DN

CN: Compute Node, DN: Data Node with PM

data access data access

Passive Disaggregated PM (pDPM) Systems

• We design and implement three pDPM key-value stores

• At computer nodes

• At global coordinator

• A hybrid approach

• Carry out extensive experiments: performance, scalability, costs

• Clover is the best pDPM model: perf similar to active DPM, but lower costs

• Discovered tradeoffs between passive and active DPMs
12

pDPM-Direct

pDPM-Central

Clover

13

Where to process and manage data?

pDPM-Direct pDPM-CentralClover

13

Where to process and manage data?

pDPM-Direct pDPM-CentralClover

Metadata
Server

DN DN DN DN

CN CN

CNCN

CN CN

control

data access

control

data access

Coordinator
control coordinate

access

control

data access data access

DN DN

data access data access

14

pDPM-Direct: Directly Access and Manage DNs from CNs

CPU NIC

DRAM

CPU NIC

DRAM

PM

NIC

PM

NIC

…

…

DN DN

CN CN

14

Overall Architecture

• CNs access and manage DNs directly via one-sided RDMA

• Both data and control planes run within CNs

pDPM-Direct: Directly Access and Manage DNs from CNs

CPU NIC

DRAM

CPU NIC

DRAM

PM

NIC

PM

NIC

…

…

DN DN

CN CN

One-sided RDMA

14

Overall Architecture

• CNs access and manage DNs directly via one-sided RDMA

• Both data and control planes run within CNs

pDPM-Direct: Directly Access and Manage DNs from CNs

CPU NIC

DRAM

CPU NIC

DRAM

PM

NIC

PM

NIC

…

…

DN DN

CN CN

One-sided RDMA

14

Overall Architecture

• CNs access and manage DNs directly via one-sided RDMA

• Both data and control planes run within CNs

Challenges

• How to manage DN space?

• How to coordinate concurrent reads/writes across CNs?

pDPM-Direct: Directly Access and Manage DNs from CNs

CPU NIC

DRAM

CPU NIC

DRAM

PM

NIC

PM

NIC

…

…

DN DN

CN CN

One-sided RDMA

15

DN

pDPM-Direct

CN CN

un-committed csum
committed csum

15

DN

lock

pDPM-Direct

CN

lock
committed csum

un-committed csum

. . .

Our solution

• Pre-assign two spaces for each KV entry (committed+uncommitted)

• Lock-free, checksum-based read (csum)

• RDMA c&s-based write lock (lock)

CN

KV

Entry

KV

Entry

un-committed csum
committed csum

15

DN

lock

pDPM-Direct

CN

lock
committed csum

un-committed csum

. . .

Our solution

• Pre-assign two spaces for each KV entry (committed+uncommitted)

• Lock-free, checksum-based read (csum)

• RDMA c&s-based write lock (lock)

Write Flow
CN

KV

Entry

KV

Entry

un-committed csum
committed csum

15

DN

lock

pDPM-Direct

CN

lock
committed csum

un-committed csum

. . .

Our solution

• Pre-assign two spaces for each KV entry (committed+uncommitted)

• Lock-free, checksum-based read (csum)

• RDMA c&s-based write lock (lock)

Write Flow

• Acquire lock

CN

KV

Entry

KV

Entry

un-committed csum
committed csum

15

DN

lock

pDPM-Direct

CN

lock
committed csum

un-committed csum

. . .

Our solution

• Pre-assign two spaces for each KV entry (committed+uncommitted)

• Lock-free, checksum-based read (csum)

• RDMA c&s-based write lock (lock)

Write Flow

• Acquire lock

• Write new data+CRC into uncommitted space (redo-copy)

CN

csum
KV

Entry

KV

Entry

un-committed

un-committed csum
committed csum

15

DN

lock

pDPM-Direct

CN

lock
committed csum

un-committed csum

. . .

Our solution

• Pre-assign two spaces for each KV entry (committed+uncommitted)

• Lock-free, checksum-based read (csum)

• RDMA c&s-based write lock (lock)

Write Flow

• Acquire lock

• Write new data+CRC into uncommitted space (redo-copy)

• Write new data+CRC into committed space

CN

csum
csumKV

Entry

KV

Entry

un-committed
committed

un-committed csum
committed csum

15

DN

lock

pDPM-Direct

CN

lock
committed csum

un-committed csum

. . .

Our solution

• Pre-assign two spaces for each KV entry (committed+uncommitted)

• Lock-free, checksum-based read (csum)

• RDMA c&s-based write lock (lock)

Write Flow

• Acquire lock

• Write new data+CRC into uncommitted space (redo-copy)

• Write new data+CRC into committed space

• Release lock

CN

csum
csumKV

Entry

KV

Entry

un-committed
committed

un-committed csum
committed csum

15

DN

lock

pDPM-Direct

CN

lock
committed csum

un-committed csum

. . .

Our solution

• Pre-assign two spaces for each KV entry (committed+uncommitted)

• Lock-free, checksum-based read (csum)

• RDMA c&s-based write lock (lock)

Write Flow

• Acquire lock

• Write new data+CRC into uncommitted space (redo-copy)

• Write new data+CRC into committed space

• Release lock

CN

csum
csum

Read Flow

• CN reads committed data and CRC

• CN checks if CRC match. If mismatch, retry

KV

Entry

KV

Entry

un-committed
committed

data csum

un-committed csum
committed csum

15

DN

lock

pDPM-Direct

CN

lock
committed csum

un-committed csum

. . .

Our solution

• Pre-assign two spaces for each KV entry (committed+uncommitted)

• Lock-free, checksum-based read (csum)

• RDMA c&s-based write lock (lock)

Write Flow

• Acquire lock

• Write new data+CRC into uncommitted space (redo-copy)

• Write new data+CRC into committed space

• Release lock

CN

csum
csum

Read Flow

• CN reads committed data and CRC

• CN checks if CRC match. If mismatch, retry

KV

Entry

KV

Entry

un-committed
committed

data csum

un-committed csum
committed csum

15

DN

lock

pDPM-Direct

CN

lock
committed csum

un-committed csum

. . .

Our solution

• Pre-assign two spaces for each KV entry (committed+uncommitted)

• Lock-free, checksum-based read (csum)

• RDMA c&s-based write lock (lock)

Write Flow

• Acquire lock

• Write new data+CRC into uncommitted space (redo-copy)

• Write new data+CRC into committed space

• Release lock

CN

csum
csum

Read Flow

• CN reads committed data and CRC

• CN checks if CRC match. If mismatch, retry

KV

Entry

KV

Entry

Best case
Write: 4 RTT + csum calc
Read: 1 RTT + csum calc

un-committed
committed

data csum

un-committed csum
committed csum

15

DN

lock

pDPM-Direct

CN

lock
committed csum

un-committed csum

. . .

Our solution

• Pre-assign two spaces for each KV entry (committed+uncommitted)

• Lock-free, checksum-based read (csum)

• RDMA c&s-based write lock (lock)

Write Flow

• Acquire lock

• Write new data+CRC into uncommitted space (redo-copy)

• Write new data+CRC into committed space

• Release lock

CN

csum
csum

Read Flow

• CN reads committed data and CRC

• CN checks if CRC match. If mismatch, retry

KV

Entry

KV

Entry

Best case
Write: 4 RTT + csum calc
Read: 1 RTT + csum calc

Slow write
Slow read with large data
Poor scalability under concurrent accesses

un-committed
committed

16

Where to process and manage data?

pDPM-Direct pDPM-CentralClover

16

Where to process and manage data?

pDPM-Direct pDPM-CentralClover
Metadata

Server

DN DN DN DN

CN CN

CNCN

CN CN

control

data access

control

data access

Coordinator
control coordinate

access

control

data access data access

DN DN

data access data access

17

The central coordinator

• Manages DN space

• Serializes CNs accesses with local locking

CNs communicate with the coordinator through two-sided RDMA

Coordinator accesses DNs through one-sided RDMA DN

CN

CPU NIC

DRAM

CPU NIC

DRAM

PM

NIC

PM

NIC

…

CPUNIC
DRAMPM

Coordinator

…

DN DN

CN CN

Easier to manage DNs and
coordinate concurrent accesses Two-sided RDMA

One-sided RDMA

pDPM-Central: A Central Coordinator between CNs and DNs

18

pDPM-Central

Coordinator

DN1 DN2

CN1 CN2

ptr
ptr

ptr
. . . Mapping

Table

lock
lock

lock

E1

Two-sided RDMA
One-sided RDMA

E2

18

pDPM-Central

Coordinator

DN1 DN2

CN1 CN2

Write Flow

ptr
ptr

ptr
. . . Mapping

Table

lock
lock

lock

E1

Two-sided RDMA
One-sided RDMA

E2

18

pDPM-Central

Coordinator

DN1 DN2

CN1 CN2

Write Flow

• CN sends RPC (with data) to Coordinator

ptr
ptr

ptr
. . . Mapping

Table

lock
lock

lock

E1

Two-sided RDMA
One-sided RDMA

Data

E2

18

pDPM-Central

Coordinator

DN1 DN2

CN1 CN2

Write Flow

• CN sends RPC (with data) to Coordinator

• Coordinator alloc a new DN entry, and write data to it (as redo-copy)

ptr
ptr

ptr
. . . Mapping

Table

lock
lock

lock

E1

Two-sided RDMA
One-sided RDMA

DN1-E1

Data

new entry

E2

18

pDPM-Central

Coordinator

DN1 DN2

CN1 CN2

Write Flow

• CN sends RPC (with data) to Coordinator

• Coordinator alloc a new DN entry, and write data to it (as redo-copy)

ptr
ptr

ptr
. . . Mapping

Table

lock
lock

lock

E1

Two-sided RDMA
One-sided RDMA

DN1-E1

Data

new entry

E2

18

pDPM-Central

Coordinator

DN1 DN2

CN1 CN2

Write Flow

• CN sends RPC (with data) to Coordinator

• Coordinator alloc a new DN entry, and write data to it (as redo-copy)

• Coordinator locks the entry in mapping table and update ptr

ptr
ptr

ptr
. . . Mapping

Table

lock
lock

lock

E1

Two-sided RDMA
One-sided RDMA

DN1-E1

Data
E2

18

pDPM-Central

Coordinator

DN1 DN2

CN1 CN2

Write Flow

• CN sends RPC (with data) to Coordinator

• Coordinator alloc a new DN entry, and write data to it (as redo-copy)

• Coordinator locks the entry in mapping table and update ptr

ptr
ptr

ptr
. . . Mapping

Table

lock
lock

lock

E1

Read Flow

Two-sided RDMA
One-sided RDMA

DN1-E1

Data
E2

18

pDPM-Central

Coordinator

DN1 DN2

CN1 CN2

Write Flow

• CN sends RPC (with data) to Coordinator

• Coordinator alloc a new DN entry, and write data to it (as redo-copy)

• Coordinator locks the entry in mapping table and update ptr

ptr
ptr

ptr
. . . Mapping

Table

lock
lock

lock

E1

Read Flow

• CN sends RPC to Coordinator

• Coordinator locks the entry in mapping table

Two-sided RDMA
One-sided RDMA

DN1-E1

Data
E2

18

pDPM-Central

Coordinator

DN1 DN2

CN1 CN2

Write Flow

• CN sends RPC (with data) to Coordinator

• Coordinator alloc a new DN entry, and write data to it (as redo-copy)

• Coordinator locks the entry in mapping table and update ptr

ptr
ptr

ptr
. . . Mapping

Table

lock
lock

lock

E1

Read Flow

• CN sends RPC to Coordinator

• Coordinator locks the entry in mapping table

• Coordinator reads data from DN and then replies to CN

Two-sided RDMA
One-sided RDMA

DN1-E1

Data

Data

E2

18

pDPM-Central

Coordinator

DN1

All cases
Read: 2 RTTs
Write: 2 RTTs

DN2

CN1 CN2

Write Flow

• CN sends RPC (with data) to Coordinator

• Coordinator alloc a new DN entry, and write data to it (as redo-copy)

• Coordinator locks the entry in mapping table and update ptr

ptr
ptr

ptr
. . . Mapping

Table

lock
lock

lock

E1

Read Flow

• CN sends RPC to Coordinator

• Coordinator locks the entry in mapping table

• Coordinator reads data from DN and then replies to CN

Two-sided RDMA
One-sided RDMA

DN1-E1

Data

Data

E2

18

pDPM-Central

Coordinator

DN1

All cases
Read: 2 RTTs
Write: 2 RTTs

Slower read
Poor scalability: coordinator is the bottleneck

DN2

CN1 CN2

Write Flow

• CN sends RPC (with data) to Coordinator

• Coordinator alloc a new DN entry, and write data to it (as redo-copy)

• Coordinator locks the entry in mapping table and update ptr

ptr
ptr

ptr
. . . Mapping

Table

lock
lock

lock

E1

Read Flow

• CN sends RPC to Coordinator

• Coordinator locks the entry in mapping table

• Coordinator reads data from DN and then replies to CN

Two-sided RDMA
One-sided RDMA

DN1-E1

Data

Data

E2

19

Where to process and manage data?

pDPM-Direct pDPM-CentralClover
Metadata

Server

DN DN DN DN

CN CN

CNCN

CN CN

control

data access

control

data access

Coordinator
control coordinate

access

control

data access data access

DN DN

data access data access

19

Where to process and manage data?

pDPM-Direct pDPM-CentralClover

- Write cannot scale

- Large metadata consumption

- Extra read RTTs

- Coordinator cannot scale

Metadata
Server

DN DN DN DN

CN CN

CNCN

CN CN

control

data access

control

data access

Coordinator
control coordinate

access

control

data access data access

DN DN

data access data access

19

Where to process and manage data?

pDPM-Direct pDPM-CentralClover

- Write cannot scale

- Large metadata consumption

- Extra read RTTs

- Coordinator cannot scale

Centralized data & metadata planes Distributed data & metadata planes

Metadata
Server

DN DN DN DN

CN CN

CNCN

CN CN

control

data access

control

data access

Coordinator
control coordinate

access

control

data access data access

DN DN

data access data access

19

Where to process and manage data?

pDPM-Direct pDPM-CentralClover

- Write cannot scale

- Large metadata consumption

- Extra read RTTs

- Coordinator cannot scale

Centralized data & metadata planes Distributed data & metadata planes

Metadata
Server

DN DN DN DN

CN CN

CNCN

CN CN

control

data access

control

data access

Coordinator
control coordinate

access

control

data access data access

DN DN

data access data access

Separate data & metadata planes

19

Where to process and manage data?

pDPM-Direct pDPM-CentralClover

- Write cannot scale

- Large metadata consumption

- Extra read RTTs

- Coordinator cannot scale

Centralized data & metadata planes Distributed data & metadata planes

Metadata
Server

DN DN DN DN

CN CN

CNCN

CN CN

control

data access

control

data access

Coordinator
control coordinate

access

control

data access data access

DN DN

data access data access

Separate data & metadata planes

20

CPU NIC

DRAM

CPU NIC

DRAM

PM

NIC

PM

NIC

…

…

CPUNIC
DRAMPM

Metadata
Server

DN DN

CN CN

Two-sided RDMA

One-sided RDMA

Clover: Combining Distributed and Centralized Approaches

20

High-level idea: separate data and metadata plane

• Separate locations

• Different communication methods

• Different management strategy

CPU NIC

DRAM

CPU NIC

DRAM

PM

NIC

PM

NIC

…

…

CPUNIC
DRAMPM

Metadata
Server

DN DN

CN CN

Two-sided RDMA

One-sided RDMA

Clover: Combining Distributed and Centralized Approaches

20

High-level idea: separate data and metadata plane

• Separate locations

• Different communication methods

• Different management strategy

Data Plane

• CNs directly access DNs with one-sided RDMA

CPU NIC

DRAM

CPU NIC

DRAM

PM

NIC

PM

NIC

…

…

CPUNIC
DRAMPM

Metadata
Server

DN DN

CN CN

Two-sided RDMA

One-sided RDMA

Clover: Combining Distributed and Centralized Approaches

20

High-level idea: separate data and metadata plane

• Separate locations

• Different communication methods

• Different management strategy

Data Plane

• CNs directly access DNs with one-sided RDMA

Metadata Plane

• CNs talk to metadata server (MS) with two-sided RDMA

CPU NIC

DRAM

CPU NIC

DRAM

PM

NIC

PM

NIC

…

…

CPUNIC
DRAMPM

Metadata
Server

DN DN

CN CN

Two-sided RDMA

One-sided RDMA

Clover: Combining Distributed and Centralized Approaches

21

Main Challenge in Data Plane:

How to efficiently support concurrent data accesses from CNs to DNs?

21

Our approach

• Lock-free data structures to increase scalability

• Optimizations to reduce read/write RTTs

Main Challenge in Data Plane:

How to efficiently support concurrent data accesses from CNs to DNs?

21

Our approach

• Lock-free data structures to increase scalability

• Optimizations to reduce read/write RTTs

Main Challenge in Data Plane:

How to efficiently support concurrent data accesses from CNs to DNs?

Our goal is to support concurrent RW
w/ read committed and atomic write

And the challenge is that these RW
are un-orchestrated

21

Our approach

• Lock-free data structures to increase scalability

• Optimizations to reduce read/write RTTs

Main Challenge in Data Plane:

How to efficiently support concurrent data accesses from CNs to DNs?

22

CN1

DN1

CN2

22

CN1

DN1
Design: lock-free data structures

CN2

22

CN1

DN1
Design: lock-free data structures

Our-of-place write (redo copy)

CN2

22

CN1

DN1
Design: lock-free data structures

Our-of-place write (redo copy)
Chained redo copies at DN

D0

ptr meta meta

head

Committed Versions

CN2

22

CN1

DN1
Design: lock-free data structures

Our-of-place write (redo copy)
Chained redo copies at DN
CN caches a cursor points to a version

D0

ptr meta meta

head

Committed Versions

CN2

Per-data
Cursor

Per-data
Cursor D0

D0

22

CN1

DN1
Design: lock-free data structures

Our-of-place write (redo copy)
Chained redo copies at DN
CN caches a cursor points to a version

D0

ptr meta meta

head

Write Flow
1. Out-of-place write. Create redo-copy
2. Chain the redo-copy, using c&s
3. If 2. fails, update cursor and retry

Committed Versions

CN2

Per-data
Cursor

Per-data
Cursor D0

D0

22

CN1

DN1
Design: lock-free data structures

Our-of-place write (redo copy)
Chained redo copies at DN
CN caches a cursor points to a version

D0

ptr meta meta

head

Write Flow
1. Out-of-place write. Create redo-copy
2. Chain the redo-copy, using c&s
3. If 2. fails, update cursor and retry

Committed Versions

CN2

Per-data
Cursor

Per-data
Cursor

D1

D0

D0

22

CN1

DN1
Design: lock-free data structures

Our-of-place write (redo copy)
Chained redo copies at DN
CN caches a cursor points to a version

D0

ptr meta meta

head

Write Flow
1. Out-of-place write. Create redo-copy
2. Chain the redo-copy, using c&s
3. If 2. fails, update cursor and retry

Committed Versions

CN2

Per-data
Cursor

Per-data
Cursor

D1

WRITED0

D0

22

CN1

DN1
Design: lock-free data structures

Our-of-place write (redo copy)
Chained redo copies at DN
CN caches a cursor points to a version

D0

ptr meta meta

head

Write Flow
1. Out-of-place write. Create redo-copy
2. Chain the redo-copy, using c&s
3. If 2. fails, update cursor and retry

C
ha

in

Committed Versions

CN2

Per-data
Cursor

Per-data
Cursor

D1

CAS D0

D0

D0

D1

22

CN1

DN1
Design: lock-free data structures

Our-of-place write (redo copy)
Chained redo copies at DN
CN caches a cursor points to a version

D0

ptr meta meta

head

Write Flow
1. Out-of-place write. Create redo-copy
2. Chain the redo-copy, using c&s
3. If 2. fails, update cursor and retry

E1: CN1 writes D1. Update cursor.
E2: CN2 writes D2. Two CAS.

C
ha

in

Committed Versions

CN2

Per-data
Cursor

Per-data
Cursor

D1

D0

D0

D1

D2

22

CN1

DN1
Design: lock-free data structures

Our-of-place write (redo copy)
Chained redo copies at DN
CN caches a cursor points to a version

D0

ptr meta meta

head

Write Flow
1. Out-of-place write. Create redo-copy
2. Chain the redo-copy, using c&s
3. If 2. fails, update cursor and retry

E1: CN1 writes D1. Update cursor.
E2: CN2 writes D2. Two CAS.

C
ha

in

Committed Versions

CN2

Per-data
Cursor

Per-data
Cursor

D1

D0

D0

D1

D2

WRITE

22

CN1

DN1
Design: lock-free data structures

Our-of-place write (redo copy)
Chained redo copies at DN
CN caches a cursor points to a version

D0

ptr meta meta

head

Write Flow
1. Out-of-place write. Create redo-copy
2. Chain the redo-copy, using c&s
3. If 2. fails, update cursor and retry

E1: CN1 writes D1. Update cursor.
E2: CN2 writes D2. Two CAS.

C
ha

in

Committed Versions

CN2

Per-data
Cursor

Per-data
Cursor

D1

D0

D0

D1

D2

CAS D0

22

CN1

DN1
Design: lock-free data structures

Our-of-place write (redo copy)
Chained redo copies at DN
CN caches a cursor points to a version

D0

ptr meta meta

head

Write Flow
1. Out-of-place write. Create redo-copy
2. Chain the redo-copy, using c&s
3. If 2. fails, update cursor and retry

E1: CN1 writes D1. Update cursor.
E2: CN2 writes D2. Two CAS.

C
ha

in

Committed Versions

CN2

Per-data
Cursor

Per-data
Cursor

D1

D0

D0

D1

D2

C
ha

in

CAS D1

D2

22

CN1

DN1
Design: lock-free data structures

Our-of-place write (redo copy)
Chained redo copies at DN
CN caches a cursor points to a version

D0

ptr meta meta

head

Write Flow
1. Out-of-place write. Create redo-copy
2. Chain the redo-copy, using c&s
3. If 2. fails, update cursor and retry

E1: CN1 writes D1. Update cursor.
E2: CN2 writes D2. Two CAS.

C
ha

in

Committed Versions

CN2

Per-data
Cursor

Per-data
Cursor

D1

D0

D0

D1

D2

C
ha

in

D2

C
ha

in D3

D3

23

CN1

DN1

D0

ptr meta meta

head
C

ha
in

Committed Versions

CN2

Per-data
Cursor

Per-data
Cursor D0

D0

D1

C
ha

in

D2

C
ha

in

D3
D1

D2

D3

D1

D2

D3D3

Design: lock-free data structures
Our-of-place write (redo copy)

Chained redo copies at DN

CN caches a cursor points to a version

Write Flow
1. Write to a new location at DN

2. Chain the redo copy using c&s
3. If 2. fails, update cursor and retry

23

CN1

DN1

D0

ptr meta meta

head
C

ha
in

Committed Versions

CN2

Per-data
Cursor

Per-data
Cursor D0

D0

D1

C
ha

in

D2

C
ha

in

D3 Read Flow
1. Starts by fetching cursor-pointed data

2. Walks the chain until found the latest

D1

D2

D3

D1

D2

D3D3

Design: lock-free data structures
Our-of-place write (redo copy)

Chained redo copies at DN

CN caches a cursor points to a version

Write Flow
1. Write to a new location at DN

2. Chain the redo copy using c&s
3. If 2. fails, update cursor and retry

23

CN1

DN1

D0

ptr meta meta

head
C

ha
in

Committed Versions

CN2

Per-data
Cursor

Per-data
Cursor D0

D0

D1

C
ha

in

D2

C
ha

in

D3 Read Flow
1. Starts by fetching cursor-pointed data

2. Walks the chain until found the latest

Latest? No

D1

D2

D3

D1

D2

D3D3

Design: lock-free data structures
Our-of-place write (redo copy)

Chained redo copies at DN

CN caches a cursor points to a version

Write Flow
1. Write to a new location at DN

2. Chain the redo copy using c&s
3. If 2. fails, update cursor and retry

23

CN1

DN1

D0

ptr meta meta

head
C

ha
in

Committed Versions

CN2

Per-data
Cursor

Per-data
Cursor D0

D0

D1

C
ha

in

D2

C
ha

in

D3 Read Flow
1. Starts by fetching cursor-pointed data

2. Walks the chain until found the latest

Latest? No

D1D2

D3

D1

D2

D3D3

Design: lock-free data structures
Our-of-place write (redo copy)

Chained redo copies at DN

CN caches a cursor points to a version

Write Flow
1. Write to a new location at DN

2. Chain the redo copy using c&s
3. If 2. fails, update cursor and retry

23

CN1

DN1

D0

ptr meta meta

head
C

ha
in

Committed Versions

CN2

Per-data
Cursor

Per-data
Cursor D0

D0

D1

C
ha

in

D2

C
ha

in

D3 Read Flow
1. Starts by fetching cursor-pointed data

2. Walks the chain until found the latest

Latest? Yes
CN1’s cursor points to D1,

needs 3 chain read until each D3

D1D2D3

D1

D2

D3D3

Design: lock-free data structures
Our-of-place write (redo copy)

Chained redo copies at DN

CN caches a cursor points to a version

Write Flow
1. Write to a new location at DN

2. Chain the redo copy using c&s
3. If 2. fails, update cursor and retry

23

CN1

DN1

D0

ptr meta meta

head
C

ha
in

Committed Versions

CN2

Per-data
Cursor

Per-data
Cursor D0

D0

D1

C
ha

in

D2

C
ha

in

D3 Read Flow
1. Starts by fetching cursor-pointed data

2. Walks the chain until found the latest

Optimization: Shortcut
Uses a shortcut to avoid long chain walk
A shortcut at DN (mostly) points to the latest data
1. CN reads shortcut, then uses it to read data
2. CN still does cursor read in parallel
• Returns when the faster of 1 and 2 finish

D1

D2

D3

shortcut

ptr meta

shortcut

shortcut

D3

Design: lock-free data structures
Our-of-place write (redo copy)

Chained redo copies at DN

CN caches a cursor points to a version

Write Flow
1. Write to a new location at DN

2. Chain the redo copy using c&s
3. If 2. fails, update cursor and retry

23

CN1

DN1

D0

ptr meta meta

head
C

ha
in

Committed Versions

CN2

Per-data
Cursor

Per-data
Cursor D0

D0

D1

C
ha

in

D2

C
ha

in

D3 Read Flow
1. Starts by fetching cursor-pointed data

2. Walks the chain until found the latest

Optimization: Shortcut
Uses a shortcut to avoid long chain walk
A shortcut at DN (mostly) points to the latest data
1. CN reads shortcut, then uses it to read data
2. CN still does cursor read in parallel
• Returns when the faster of 1 and 2 finish

D1

D2

D3

shortcut

ptr meta

shortcut

shortcut

Shortcut Read
1. Read shortcut

2. Read latest version

Read
Shortcutptr meta

D3

Design: lock-free data structures
Our-of-place write (redo copy)

Chained redo copies at DN

CN caches a cursor points to a version

Write Flow
1. Write to a new location at DN

2. Chain the redo copy using c&s
3. If 2. fails, update cursor and retry

23

CN1

DN1

D0

ptr meta meta

head
C

ha
in

Committed Versions

CN2

Per-data
Cursor

Per-data
Cursor D0

D0

D1

C
ha

in

D2

C
ha

in

D3 Read Flow
1. Starts by fetching cursor-pointed data

2. Walks the chain until found the latest

Optimization: Shortcut
Uses a shortcut to avoid long chain walk
A shortcut at DN (mostly) points to the latest data
1. CN reads shortcut, then uses it to read data
2. CN still does cursor read in parallel
• Returns when the faster of 1 and 2 finish

D1

D2

D3

shortcut

ptr meta

shortcut

shortcut

Shortcut Read
1. Read shortcut

2. Read latest version

Read
D3

Read
Shortcutptr metaD3

Design: lock-free data structures
Our-of-place write (redo copy)

Chained redo copies at DN

CN caches a cursor points to a version

Write Flow
1. Write to a new location at DN

2. Chain the redo copy using c&s
3. If 2. fails, update cursor and retry

23

CN1

DN1

D0

ptr meta meta

head
C

ha
in

Committed Versions

CN2

Per-data
Cursor

Per-data
Cursor D0

D0

D1

C
ha

in

D2

C
ha

in

D3 Read Flow
1. Starts by fetching cursor-pointed data

2. Walks the chain until found the latest

Optimization: Shortcut
Uses a shortcut to avoid long chain walk
A shortcut at DN (mostly) points to the latest data
1. CN reads shortcut, then uses it to read data
2. CN still does cursor read in parallel
• Returns when the faster of 1 and 2 finish

D1

D2

D3

shortcut

ptr meta

shortcut

shortcut

Shortcut Read
1. Read shortcut

2. Read latest version

Read
D3

Read
Shortcutptr metaD3

Design: lock-free data structures
Our-of-place write (redo copy)

Chained redo copies at DN

CN caches a cursor points to a version

Write Flow
1. Write to a new location at DN

2. Chain the redo copy using c&s
3. If 2. fails, update cursor and retry

Perf when low contention
Write: 2 RTT
Read: 1 RTT

24

CN1

DN1

D0

ptr meta meta

headC
ha

inCN2

Per-data
Cursor D0D1

C
ha

in
C

ha
in

MS

FreeLists

GCLists

Metadata

Two-sided
RDMA

Metadata Server (MS)

D3

D1

D2

D3

shortcut

24

CN1

DN1

D0

ptr meta meta

headC
ha

inCN2

Per-data
Cursor D0D1

C
ha

in
C

ha
in

MS

FreeLists

GCLists

Metadata

Two-sided
RDMA

Metadata Server (MS)
Tasks
• Space management
• Garbage collection
• Global load balancing

D3

D1

D2

D3

shortcut

24

CN1

DN1

D0

ptr meta meta

headC
ha

inCN2

Per-data
Cursor D0D1

C
ha

in
C

ha
in

MS

FreeLists

GCLists

Metadata

Two-sided
RDMA

Metadata Server (MS)
Tasks
• Space management
• Garbage collection
• Global load balancing

Design principles

D3

D1

D2

D3

shortcut

24

CN1

DN1

D0

ptr meta meta

headC
ha

inCN2

Per-data
Cursor D0D1

C
ha

in
C

ha
in

MS

FreeLists

GCLists

Metadata

Two-sided
RDMA

Metadata Server (MS)
Tasks
• Space management
• Garbage collection
• Global load balancing

Design principles
• All metadata ops are off critical path

D3

D1

D2

D3

shortcut

24

CN1

DN1

D0

ptr meta meta

headC
ha

inCN2

Per-data
Cursor D0D1

C
ha

in
C

ha
in

MS

FreeLists

GCLists

Metadata

Two-sided
RDMA

Metadata Server (MS)
Tasks
• Space management
• Garbage collection
• Global load balancing

Design principles
• All metadata ops are off critical path
• MS manages DN space without accessing DNs

D3

D1

D2

D3

shortcut

24

CN1

DN1

D0

ptr meta meta

headC
ha

inCN2

Per-data
Cursor D0D1

C
ha

in
C

ha
in

MS

FreeLists

GCLists

Metadata

Two-sided
RDMA

Metadata Server (MS)
Tasks
• Space management
• Garbage collection
• Global load balancing

Design principles
• All metadata ops are off critical path
• MS manages DN space without accessing DNs

Techniques
• Batched allocation

• Async garbage collection

• No cache invalidation

D3

D1

D2

D3

shortcut

24

CN1

DN1

D0

ptr meta meta

headC
ha

inCN2

Per-data
Cursor D0D1

C
ha

in
C

ha
in

MS

FreeLists

GCLists

Metadata

Two-sided
RDMA

Metadata Server (MS)
Tasks
• Space management
• Garbage collection
• Global load balancing

Design principles
• All metadata ops are off critical path
• MS manages DN space without accessing DNs

Techniques
• Batched allocation

• Async garbage collection

• No cache invalidation

D3

D1

D2

D3

shortcut

Alloc Flow
• CN asks MS for a bunch of free

buffers at a time
• MS assigns spaces from FreeLists

(with load balancing consideration)

al
lo

c

al
lo

c

24

CN1

DN1

D0

ptr meta meta

headC
ha

inCN2

Per-data
Cursor D0D1

C
ha

in
C

ha
in

MS

FreeLists

GCLists

Metadata

Two-sided
RDMA

Metadata Server (MS)
Tasks
• Space management
• Garbage collection
• Global load balancing

Design principles
• All metadata ops are off critical path
• MS manages DN space without accessing DNs

Techniques
• Batched allocation

• Async garbage collection

• No cache invalidation

D3

D1

D2

D3

shortcut

Alloc Flow
• CN asks MS for a bunch of free

buffers at a time
• MS assigns spaces from FreeLists

(with load balancing consideration)

24

CN1

DN1

D0

ptr meta meta

headC
ha

inCN2

Per-data
Cursor D0D1

C
ha

in
C

ha
in

MS

FreeLists

GCLists

Metadata

Two-sided
RDMA

Metadata Server (MS)
Tasks
• Space management
• Garbage collection
• Global load balancing

Design principles
• All metadata ops are off critical path
• MS manages DN space without accessing DNs

Techniques
• Batched allocation

• Async garbage collection

• No cache invalidation

D3

D1

D2

D3

shortcut

Alloc Flow
• CN asks MS for a bunch of free

buffers at a time
• MS assigns spaces from FreeLists

(with load balancing consideration)

GC Flow
• After write, CN asynchronously
retires a batch of old versions

• MS enqueues them into FreeLists

re
tir

e

re
tir

e

24

CN1

DN1

D0

ptr meta meta

headC
ha

inCN2

Per-data
Cursor D0D1

C
ha

in
C

ha
in

MS

FreeLists

GCLists

Metadata

Two-sided
RDMA

Metadata Server (MS)
Tasks
• Space management
• Garbage collection
• Global load balancing

Design principles
• All metadata ops are off critical path
• MS manages DN space without accessing DNs

Techniques
• Batched allocation

• Async garbage collection

• No cache invalidation

D3D3

shortcut

Alloc Flow
• CN asks MS for a bunch of free

buffers at a time
• MS assigns spaces from FreeLists

(with load balancing consideration)

GC Flow
• After write, CN asynchronously
retires a batch of old versions

• MS enqueues them into FreeLists

25

DN1 DN2 DN3 DN4

D0 D0

• Data Redundancy

• User-defined replication degree

• a novel atomic chaining replication

• link a version to all the replicas of next version

• Clover can handle both DN and MS failures

Clover Replication

CN1

25

DN1 DN2 DN3 DN4

D0 D0

• Data Redundancy

• User-defined replication degree

• a novel atomic chaining replication

• link a version to all the replicas of next version

• Clover can handle both DN and MS failures

Clover Replication

D1 D1

CN1

25

DN1 DN2 DN3 DN4

D0 D0

• Data Redundancy

• User-defined replication degree

• a novel atomic chaining replication

• link a version to all the replicas of next version

• Clover can handle both DN and MS failures

Clover Replication

D1 D1

CN1

25

DN1 DN2 DN3 DN4

D0 D0

• Data Redundancy

• User-defined replication degree

• a novel atomic chaining replication

• link a version to all the replicas of next version

• Clover can handle both DN and MS failures

Clover Replication

D1 D1

CN1

25

DN1 DN2 DN3 DN4

D0 D0

• Data Redundancy

• User-defined replication degree

• a novel atomic chaining replication

• link a version to all the replicas of next version

• Clover can handle both DN and MS failures

Clover Replication

D1 D1

D2 D2

CN1

25

DN1 DN2 DN3 DN4

D0 D0

• Data Redundancy

• User-defined replication degree

• a novel atomic chaining replication

• link a version to all the replicas of next version

• Clover can handle both DN and MS failures

Clover Replication

D1 D1

D2 D2

CN1

25

DN1 DN2 DN3 DN4

D0 D0

• Data Redundancy

• User-defined replication degree

• a novel atomic chaining replication

• link a version to all the replicas of next version

• Clover can handle both DN and MS failures

Clover Replication

D1 D1

D2 D2

CN1

26

Where to process and manage data?

pDPM-Direct pDPM-CentralClover
Metadata

Server

DN DN DN DN

CN CN

CNCN

CN CN

control

data access

control

data access

Coordinator
control coordinate

access

control

data access data access

DN DN

data access data access

26

Where to process and manage data?

pDPM-Direct pDPM-CentralClover

- Write cannot scale

- Large metadata consumption

- Extra read RTTs

- Coordinator cannot scale

Metadata
Server

DN DN DN DN

CN CN

CNCN

CN CN

control

data access

control

data access

Coordinator
control coordinate

access

control

data access data access

DN DN

data access data access

26

Where to process and manage data?

pDPM-Direct pDPM-CentralClover

- Write cannot scale

- Large metadata consumption

- Extra read RTTs

- Coordinator cannot scale

Centralized data & metadata Distributed data & metadata

Metadata
Server

DN DN DN DN

CN CN

CNCN

CN CN

control

data access

control

data access

Coordinator
control coordinate

access

control

data access data access

DN DN

data access data access

26

Where to process and manage data?

pDPM-Direct pDPM-CentralClover

- Write cannot scale

- Large metadata consumption

- Extra read RTTs

- Coordinator cannot scale

Centralized data & metadata Distributed data & metadata

Metadata
Server

DN DN DN DN

CN CN

CNCN

CN CN

control

data access

control

data access

Coordinator
control coordinate

access

control

data access data access

DN DN

data access data access

Separate data & metadata

26

Where to process and manage data?

pDPM-Direct pDPM-CentralClover

- Write cannot scale

- Large metadata consumption

- Extra read RTTs

- Coordinator cannot scale

Centralized data & metadata Distributed data & metadata

Metadata
Server

DN DN DN DN

CN CN

CNCN

CN CN

control

data access

control

data access

Coordinator
control coordinate

access

control

data access data access

DN DN

data access data access

Separate data & metadata

+ Good read/write performance

+ Scale with both CNs and DNs

Evaluation Setup
• Systems evaluated

• pDPM Systems: pDPM-Direct, pDPM-Central, Clover

• Non-disaggregated Systems: Octopus, ATC’17 and Hotpot, SoCC’17

• Two-sided RDMA KVS: HERD, SIGCOMM’14, ported HERD-BF (Bluefield)

• Testbed

• 14 servers, each has an Intel Xeon E5-2620, 128 GB DRAM, and 100 Gpbs
Mellanox ConnectX-4 NIC, all connected via a 100 Gpbs IB switch

• Mellanox BlueField SmartNIC for HERD 27

Microbenchmark - Latency

28

• One CN synchronously reads/writes a KV entry on a DN

• HERD and HERD-Bluefield use 12 polling threads

Microbenchmark - Latency

28

Read

La
te

nc
y

(u
s)

0

3

6

9

12

15

Request Size (B)
128 256 512 1K 2K 4K

Verbs read
Clover
pDPM-Direct
pDPM-Central
HERD
HERD-BF

Write

La
te

nc
y

(u
s)

0

4

8

12

16

20

Request Size (B)
128 256 512 1K 2K 4K

• One CN synchronously reads/writes a KV entry on a DN

• HERD and HERD-Bluefield use 12 polling threads

Microbenchmark - Latency

28

Read

La
te

nc
y

(u
s)

0

3

6

9

12

15

Request Size (B)
128 256 512 1K 2K 4K

Verbs read
Clover
pDPM-Direct
pDPM-Central
HERD
HERD-BF

Write

La
te

nc
y

(u
s)

0

4

8

12

16

20

Request Size (B)
128 256 512 1K 2K 4K

• One CN synchronously reads/writes a KV entry on a DN

• HERD and HERD-Bluefield use 12 polling threads

Microbenchmark - Latency

28

Read

La
te

nc
y

(u
s)

0

3

6

9

12

15

Request Size (B)
128 256 512 1K 2K 4K

Verbs read
Clover
pDPM-Direct
pDPM-Central
HERD
HERD-BF

Write

La
te

nc
y

(u
s)

0

4

8

12

16

20

Request Size (B)
128 256 512 1K 2K 4K

• One CN synchronously reads/writes a KV entry on a DN

• HERD and HERD-Bluefield use 12 polling threads

Microbenchmark - Latency

28

Read

La
te

nc
y

(u
s)

0

3

6

9

12

15

Request Size (B)
128 256 512 1K 2K 4K

Verbs read
Clover
pDPM-Direct
pDPM-Central
HERD
HERD-BF

Write

La
te

nc
y

(u
s)

0

4

8

12

16

20

Request Size (B)
128 256 512 1K 2K 4K

• One CN synchronously reads/writes a KV entry on a DN

• HERD and HERD-Bluefield use 12 polling threads

Microbenchmark - Latency

28

Read

La
te

nc
y

(u
s)

0

3

6

9

12

15

Request Size (B)
128 256 512 1K 2K 4K

Verbs read
Clover
pDPM-Direct
pDPM-Central
HERD
HERD-BF

Write

La
te

nc
y

(u
s)

0

4

8

12

16

20

Request Size (B)
128 256 512 1K 2K 4K

• One CN synchronously reads/writes a KV entry on a DN

• HERD and HERD-Bluefield use 12 polling threads

Microbenchmark - Latency

28

Read

La
te

nc
y

(u
s)

0

3

6

9

12

15

Request Size (B)
128 256 512 1K 2K 4K

Verbs read
Clover
pDPM-Direct
pDPM-Central
HERD
HERD-BF

Write

La
te

nc
y

(u
s)

0

4

8

12

16

20

Request Size (B)
128 256 512 1K 2K 4K

• One CN synchronously reads/writes a KV entry on a DN

• HERD and HERD-Bluefield use 12 polling threads

Microbenchmark - Latency

28

Read

La
te

nc
y

(u
s)

0

3

6

9

12

15

Request Size (B)
128 256 512 1K 2K 4K

Verbs read
Clover
pDPM-Direct
pDPM-Central
HERD
HERD-BF

Write

La
te

nc
y

(u
s)

0

4

8

12

16

20

Request Size (B)
128 256 512 1K 2K 4K

• One CN synchronously reads/writes a KV entry on a DN

• HERD and HERD-Bluefield use 12 polling threads

YCSB Results

29

• 100K KV entries, 1 million operations, Zipf access distribution

• 4 CNs (8 threads per CN), 4 DNs

YCSB Results

29

Th
ro

ug
hp

ut
 (M

O
PS

)

0

6

12

18

24

30

C (0% Write) B (5% Write) A (50% Write)

pDPM-Direct
pDPM-Central
Clover
Octopus

• 100K KV entries, 1 million operations, Zipf access distribution

• 4 CNs (8 threads per CN), 4 DNs

YCSB Results

29

Th
ro

ug
hp

ut
 (M

O
PS

)

0

6

12

18

24

30

C (0% Write) B (5% Write) A (50% Write)

pDPM-Direct
pDPM-Central
Clover
Octopus

• 100K KV entries, 1 million operations, Zipf access distribution

• 4 CNs (8 threads per CN), 4 DNs

YCSB Results

29

Th
ro

ug
hp

ut
 (M

O
PS

)

0

6

12

18

24

30

C (0% Write) B (5% Write) A (50% Write)

pDPM-Direct
pDPM-Central
Clover
Octopus

• 100K KV entries, 1 million operations, Zipf access distribution

• 4 CNs (8 threads per CN), 4 DNs

YCSB Results

29

Th
ro

ug
hp

ut
 (M

O
PS

)

0

6

12

18

24

30

C (0% Write) B (5% Write) A (50% Write)

pDPM-Direct
pDPM-Central
Clover
Octopus

• 100K KV entries, 1 million operations, Zipf access distribution

• 4 CNs (8 threads per CN), 4 DNs

YCSB Results

29

Th
ro

ug
hp

ut
 (M

O
PS

)

0

6

12

18

24

30

C (0% Write) B (5% Write) A (50% Write)

pDPM-Direct
pDPM-Central
Clover
Octopus

• 100K KV entries, 1 million operations, Zipf access distribution

• 4 CNs (8 threads per CN), 4 DNs

YCSB Results

29

Th
ro

ug
hp

ut
 (M

O
PS

)

0

6

12

18

24

30

C (0% Write) B (5% Write) A (50% Write)

pDPM-Direct
pDPM-Central
Clover
Octopus

• 100K KV entries, 1 million operations, Zipf access distribution

• 4 CNs (8 threads per CN), 4 DNs

Median Avg 99%

C 1 1 1

B 1 1.26 5

A 1 1.33 6

Clover RTTs

OPEX and CAPEX

30

• Total energy to complete 10 million YCSB requests

• Includes all parties (CN and CN), except PM power usage

Pr
ic

e

0

22500

45000

67500

90000

Clover Direct Central HERD HERD-BF

OPEX and CAPEX

30

• Total energy to complete 10 million YCSB requests

• Includes all parties (CN and CN), except PM power usage

Pr
ic

e

0

22500

45000

67500

90000

Clover Direct Central HERD HERD-BF

Clover is cheap to build and run

Conclusion

• pDPM offers deployment, cost, and performance benefits

• Separating data and metadata is crucial

• Future system could benefit from a hybrid hardware model

31

Thank you!

32

.io

wuklab.io
sysnet.ucsd.edu

github.com/WukLab/pDPMOpen source @
Visit us @

http://wuklab.io
http://sysnet.ucsd.edu
https://github.com/WukLab/pDPM

Backup Slides

33

pDPM-Direct/Central RW Protocols

34

CN

DN

C C

1
Lock

2
Create-
Redo

3
Update

4
Unlock

Read Write C CRC Calculation

CN

Cor

DN

RL U

Read Write

WL UM U
RL Reader Lock

U Unlock

WL Writer Lock

UM Update Metadata

35

MS

CN

DN

Write

Create-
Redo

Link-
Redo

Write-Background

Update-
Shortcut

GC

Read

Check if
latest

Clover RW Protocols

Φ

Clover Data Structure

36

Write

Head

Φ

Clover Data Structure

36

Φ

Write

Head

Clover Data Structure

36

Φ

Write

Head

Clover Data Structure

36

Φ Φ

Write GC

Head Head

Clover Data Structure

36

Φ Φ

Write GC

Head Head

Clover Data Structure

36

Φ Φ

Write GC Replication
Φ Φ

Head Head Head

Clover Data Structure

36

Φ Φ

Write GC Replication
Φ Φ

Head Head Head

Clover Data Structure

36

Φ Φ

Write GC Replication
Φ Φ

Head Head Head

Load Balancing

Where is the key-value hashtable?

• pDPM-Direct: each CN has an identical mapping table

• pDPM-Central: each CN performs CN->coordinator mapping. Each
coordinator has a full identical mapping table

• Clover: MSs have full mapping table, each CN caches a portion of it

37

Possible Questions

• If DPM-Central has multiple coordinates, cannot it scale?

• Why not use read-after-write to ensure remote persistency?

• Where is the key-> entry hashtable?

• The whole table is at MS, each CN caches a portion of it?

38

