
Sophon: Efficient Container-grained 
Serverless Scheduling 

Lixiang Ao, Geoff Voelker, George Porter



Serverless: a lightweight cloud computing 
paradigm

hardware

OS

runtime

application

Bare metal

hardware

hypervisor

OS

runtime

application

VM

hardware

OS

runtime

application

Container

hardware

OS

runtime

application

Serverless

managed

user control

more user control more lightweight

2



Serverless characteristics

3

No explicit server
users do not manage 
server, network, 
storage, etc.

Elasticity
scale from zero to 
thousands of 
instances within 
seconds

Pay-as-you-go
only bill actual user 
code time, every 
100ms

Stateless
ephemeral functions 
handle each request 
individually



What happens when invoking a function

1. Loading user image/code

2. Launch security sandboxes (VMs, containers)

3. Initialize runtime, libraries, code

4. Start function

4

cold start:
>= 2s

warm start: < 10ms

A warm environment is cached till it expires or till evicted when resource is low.
Whether cold start or warm start is mostly decided by function scheduling



OpenWhisk scheduling overview

5

1. post request to scheduler (controller)

2. scheduler chooses worker (invoker)

3. request sent to invoker via message queues

4. if container exists
warm start

else
cold start



OpenWhisk scheduling overview

6

Invoker 0

🔴🔴🔴🔴

Invoker 1

🟢🟢🔴🔴

Invoker 2

🟢🟢🟢🔴

Invoker 3

🟢🟢🟢🔴

funcA: requires 1 slot
funcA Seq: [0 1 2 3 4]
try 0 ❌
try 1 ✅

1. assign each function a sequence of invokers
2. try each invoker in sequence until find enough memory slots

funcB: requires 2 slot
funcB Seq: [4 1 3 0 2]
try 4 ❌
try 1 ❌
try 3 ✅

Invoker 4

🟢🔴🔴🔴

Invoker 1

🟢🔴🔴🔴

Invoker 3

🟢🔴🔴🔴

A function tends to concentrate invocations on few Invokers, increasing warm start rate



Problems

7

10 node OpenWhisk test bed 1000 node simulation

Testing using real-world serverless workloads from Azure Functions Traces[1]

[1] Shahrad, M., Fonseca, R., Goiri, Í., Chaudhry, G., Batum, P., Cooke, J., Laureano, E., Tresness, C., Russinovich, M. and Bianchini, R., 2020. Serverless in the Wild: Characterizing and 
Optimizing the Serverless Workload at a Large Cloud Provider. ATC 2020.



Key insights

• Container contention: Under high workload, different functions 
compete for container resources, creating unnecessary evictions and 
cold starts and degrade performance, a phenomenon we dubbed 
“container thrashing”.

• Root cause: The scheduler makes placement decisions on a node 
granularity. It only considers the amount of resources on a node, not 
container states, a key factor in serverless performance.

• Idea: scheduling at container granularity instead of node granularity.

8



Sophon: Container-grained serverless 
scheduling

Node-grained scheduling Container-grained scheduling

Resource 
considerations

Amount of resource (RAM, 
CPU) on a node

Amount of resource on a node 
+
container states

Resource updates Resource amount changes Resource amount changes + 
container state transitions

Scheduling 
decisions

Choose node Choose node + container

9



Sophon design & implementation

• Integrated in OpenWhisk

• Add container states maintaining/monitoring/transitioning 
functionality to the scheduler, Invoker, and the messaging 
components.

• Both scheduler and Invokers can update container states

• State transition conflicts are resolved by Invokers

10



Serverless-tailored scheduling policies

• Goals
• Increase warm start rate => More concentrated placement

• Avoid unnecessary evictions => Less concentrated placement

• Sophon’s container-grained scheduling enables striking the balance 
between the two conflicting goals

11



Serverless-tailored scheduling policies

• Cost model: Choose candidate w/ smallest cost
• Increase warm start rate => distance cost D

• Avoid unnecessary evictions => eviction cost E

• D = candidate’s index in the Invoker sequence divided by # of Invokers

• E = σ𝑖∈𝐶 𝑒
−𝜆𝑡𝑖 where 𝐶 is all the containers that will be evicted by the 

decision, 𝑡𝑖 is the idle time of container 𝑖, 𝜆 is decay rate parameter

• Total cost = 𝑊𝑑 × 𝐷 +𝑊𝑒 × 𝐸, where 𝑊𝑑 +𝑊𝑒 = 1

• 𝜆, 𝑊𝑑 ,𝑊𝑒 are chosen empirically. We use 0.3, 0.05, and 0.95.

12



Evaluation

• Scheduling quality of Sophon: throughput, cold starts/evictions, 
latency

• Justify chosen parameters

13



14

Throughput

Sophon prevents container thrashing,
increases stable throughput by 80%



Cold starts/evictions

15

Sophon reduces number of cold starts 
and evictions by up to 73%. Sophon
performs better under high, medium, 
and low workloads.



Invocation Latency

16

Sophon has 28% lower average latency 
under low workloads and significantly 
lower latency under high workload 
when container thrashing exists in 
OpenWhisk.

From scheduler 
receives request to 
function is started 
on an Invoker.

Test with low, high 
workloads.



17

Parameters

𝜆 = 0.3, 𝑊𝑑 = 0.05 are optimal 
parameters.



Conclusion

• Existing node-grained serverless scheduling ignores container 
contention between functions, creating container thrashing that 
degrades system performance.

• Sophon uses container-grained scheduling mechanism to prevent 
container thrashing, and cost model-based policies to balance 
conflicting scheduling goals.

• We integrate Sophon with OpenWhisk, providing up to 80% higher 
stable throughput and significantly lower latency.

18



19

THANK YOU! 
Q&A


