Current CNS News

CNS 2017 News


  • Using Batteries to Cut Utility Costs

    CNS postdoctoral researcher Alper Sinan Akyurek developed an algorithm for controlling batteries that can decrease the utility cost of an actual building by up to 50 percent compared to a building powered without the use of batteries.

    Alper Sinan Akyurek is an ECE alumnus (Ph.D. ’17) and postdoc in CNS in the Systems Energy Efficiency Lab of CSE Prof. Tajana Rosing

    Akyurek (Ph.D. ’17) – who completed his doctorate in January – still works in the Systems Energy Efficiency Laboratory of CSE Prof. Tajana Rosing (who has an adjunct appointment in Electrical and Computer Engineering, Akyurek’s previous department). Together they published their findings in a paper on “Optimal Distributed Nonlinear Battery Control” in the December 2016 issue of the IEEE Journal of Emerging and Selected Topics in Power Electronics*.

    As the researchers noted in their article, energy storage systems enable on-demand dispatch of energy to compensate for volatility in the generation and consumption — supply and demand — for power. “Our optimal distributed battery control handles multiple batteries with low computational complexity,” they noted.

    Compared to previous work, they used a higher-accuracy nonlinear battery model with only two percent error. “We show in a case study that optimal algorithms designed for a linear battery model induce an error of up to 60 percent in terms of cost reduction… [while] for the case of a constant load profile, we show that this error exceeds 150 percent,” said Akyurek.

    Comparing the latest algorithm to the state-of-the-art load-following battery management technique, the new algorithm produced a 30 percent improvement in utility cost. Furthermore, the algorithm obtains the solution for multiple batteries in a decentralized way with guaranteed convergence.

    Funding for the control research came from TerraSwarm, one of six centers of the Semiconductor Research Corporation’s STARnet program funded by the Defense Applied Research Projects Agency (DARPA), Microelectronics Advanced Research Corp. (MARCO) and DARPA-E (for Energy). SRC is backed by companies including Intel, IBM, Micron and Texas Instruments. Professor Rosing co-led TerraSwarm’s Smart Cities effort, on which Akyurek worked for three years until it ended in October 2015.

    Akyurek’s primary research related to CNS involves context-aware optimization in Internet of Things (IoT) systems. His research extends to optimized control in the Smart Grid for energy efficiency, and he has developed a range of control algorithms for purposes ranging from communication and prediction to controlling energy storage.

    Prior to his Ph.D. at UC San Diego, the postdoctoral researcher completed his B.Sc. (’08) and M.Sc. (’11) at Middle East Technical University in Ankara, Turkey, where he was a member of its Communication Networks Research Group. Akyurek also worked as a senior design engineer on wireless networks for the Turkish company, Aselsan, Inc., before enrolling at UC San Diego.

    Looking to the future, Akyurek hopes to continue his current line of research. “We are working to extend our optimal nonlinear distributed control solution to other areas in the Smart Grid,” he noted. “We want to modify it for use in other Internet of Things ecosystems such as sensor networks, user-in-the-loop control systems, and managing the maintenance of devices.”

    _____________________________________

    *A.S. Akyurek and T. Simunic Rosing, “Optimal Distributed Nonlinear Battery Control”, IEEE Journal of Emerging and Selected Topics in Power Electronics, December 2016.

    Related Links

    Article in Journal of Emerging and Selected Topics in Power Electronics
    Akyurek Web Page
    Systems Energy Efficiency Lab
    TerraSwarm Research Center

  • Center for Networked Systems Adds New Faculty Members

    CSE Assistant Professor Deian Stefan

    The Center for Networked Systems (CNS) at the University of California San Diego now has 22 faculty membersfollowing the addition of two new professors to its ranks.  Both newcomers – Deian Stefan and Aaron Schulman – joined the Computer Science and Engineering (CSE) faculty as assistant professors recently, with Stefan starting to teach last fall, and Schulman this winter.

    “Professors Schulman and Stefan both work in the systems area, but their research interests also go well beyond networked systems,” said CNS co-director George Porter. “Both share an interest in secure systems. Schulman’s interests extend to embedded systems and even operating systems, and Stefan’s other major research focus is on programming languages. Both have a lot to bring to CNS’s research agenda.”

    CSE Assistant Professor Aaron Schulman

    While still doing a postdoc at Stanford, Aaron Schulman founded a company called Mellow Research, LLC, to build BattOr, a power monitor he invented to track how much energy different features of applications use while running on mobile phones. For his part, Deian Stefan delayed his start at UC San Diego by a year to finish launching a web security startup called Intrinsic (formerly GitStar), in which he continues to hold the part-time job of Chief Scientist. “At Intrinsic we’ve been transferring research into practice by building systems, tools and languages that ultimately make it easier for developers to build and deploy Node.js web applications with minimal trust,” said Stefan.

    Both Stefan and Aaron Schulman came to UC San Diego from Stanford University. Stefan earned his Ph.D. in Computer Science in 2015, while Schulman was a postdoctoral researcher from 2013 to 2016 in the lab of Stanford professor Sachin Katti. Schulman earned his Ph.D. from the University of Maryland, College Park, in 2013 (with a thesis on the reliability of Internet last-mile links that later won him the SIGCOMM Doctoral Dissertation Award).

    Deian Stefan

    Stefan joins CNS

    According to Stefan, his primary research interest is in “building principled and practical secure systems.” He builds browsers and language runtime systems by applying programming language techniques and analysis. Among the secure systems Stefan has also helped to build: a secure package manager; a browser confinement system designed for modern web applications; a security-centric framework for building web platforms; a dynamic information flow control system; and a programming language for writing secure, constant-time code.

    The professor serves as editor of the COWL specification, and he participates more broadly in developing specs as a member of the W3C WebAppSec and Node.js Security working groups. “By working on specifications,” said Stefan, “we’re trying to broadly influence browser and runtime systems that will ultimately make the web a safer place.”

    Stefan began teaching in CSE in Fall 2016, with a course on language-based system security called “Building Secure Systems using Programming Languages and Analysis” (CSE 291). This winter quarter, he is also teaching an undergraduate course, CSE 130 (Programming Languages: Principles and Paradigms), which covers basic concepts and design tradeoffs related to programming languages (including crash courses in JavaScript and Haskell).

    Aaron Schulman

    Aaron Schulman

    Schulman started on July 1, 2016, but delayed making the move from Palo Alto until late in the year. As of this winter, he is teaching his first course at UC San Diego — a graduate-level course on topics in mobile computing and communication (CSE 291).

    In his syllabus for the course, Schulman notes that students are learning about the challenges facing smartphones, wearables and smart devices that have overtaken PCs as the dominant platform for computing and communication. “Mobile devices have severely constrained energy capacity, their network connectivity is exclusively provided by unreliable, bandwidth-constrained wireless links, and they carry a standard set of sensors that are seemingly insufficient for certain applications and also can inadvertently leak private information about their users,” explained Schulman. “We discuss research that addresses the challenges introduced by the mobile platform by blurring the lines between traditional research areas in computer science.”

    In past work, Schulman has improved the efficiency of wireless networks, cellular network flexibility, and the energy efficiency of mobile applications. He also quantified residential Internet network reliability, made progress in securing the web’s public key infrastructure, and identified privacy leaks in mobile devices.

    Related Links

    Center for Networked Systems
    Aaron Schulman Website
    Deian Stefan Website

     

  • Former CSE/CNS Professor Elected to National Academy of Engineering

    Former UC San Diego computer science and engineering and Center for Networked Systems professor George Varghese has been elected to membership in the National Academy of Engineering. He is among the 84 new U.S. members (and 22 foreign members) elected to the organization in 2017. Varghese was cited for his contributions to “network algorithmics that make the Internet faster, more secure, and more reliable.”

    Professor George Varghese

    Varghese — who was on the UC San Diego faculty from 2000 to 2012 — is currently a Chancellor’s Professor in the Department of Computer Science at UCLA. He returned to the University of California in August 2016, roughly four years after stepping down from his full professorship at UC San Diego to work for Microsoft Research in Silicon Valley.

    More than a decade ago, while still at UC San Diego, Varghese took a leave of absence in 2004 to co-found NetSift, Inc., with his Ph.D. student Sumeet Singh (Varghese as president, Singh as NetSift’s chief scientist). The company developed automated techniques for learning and detecting attack signatures. Barely one year later, NetSift was acquired by Cisco Systems in 2005, and Varghese extended his faculty leave to help Cisco transition the NetSift technology to a 20-Gigabit-per-second chip called Hawkeye. (Singh went on to work for Cisco for seven years.) CNS co-director Stefan Savage co-authored some of the early work on the NetSift technology, as did Varghese’s Ph.D. student Cristian Estan, who is now at Google.

    Among Varghese’s honors, he received the Koji Kobayashi Award for Computers and Communications in 2014 for his work in network algorithmics and its applications to high-speed packet networks. The same year, he received the SIGCOMM Lifetime Award for “sustained and diverse contributions to network algorithmics, with far-reaching impact in both research and industry.”

    Varghese completed his Ph.D. at MIT in 1993, after doing his Master’s degree at North Carolina State. He did his undergraduate work at the Indian Institute of Technology (IIT) Bombay, which awarded Varghese its Distinguished Alumnus Award in 2015. In 2002 he was elected a Fellow of the ACM.

     

     

  • CNS Invites Applications for Second Alan Turing Memorial Scholarship; Feb. 6 Deadline

    Alan Turing

    The Center for Networked Systems (CNS) in UC San Diego’s Jacobs School of Engineering is once again looking for an undergraduate student who is interested in networked systems – and also active in supporting the LGBT community. “Our goal is to use this scholarship to further boost diversity and inclusiveness in the field of systems and networking and give undergraduates an opportunity to work on top-notch research projects before they get to grad school,” said CNS co-director George Porter, a professor in the Computer Science and Engineering department.

    CNS has invited undergraduates to apply for its Alan Turing Memorial Scholarship for the 2017-2018 academic year. The scholarship will be awarded this spring to a student majoring in a field that touches on networked systems, including computer science, computer engineering, public policy, communication or related programs.

    According to Porter, CNS will give preference to “students with demonstrated academic merit, financial need and experience or interest in research.”

    All applications must be submitted through the online application at https://ucsd.academicworks.com/ . Anyone with questions about the application process can get more information through the UC San Diego Scholarship Office by emailing to scholarships@ucsd.edu .  The application deadline is no later than Monday, February 6, 2017.

    In addition to the $10,000 scholarship, the recipient will have the opportunity to carry out guided research under the direction of one of CNS’s faculty mentors.

    The scholarship pays homage to Alan Turing, the British mathematician and founder of the computer science field whose code-breaking work contributed substantially to the Allied victory in World War II (notably by breaking Germany’s Enigma code). Turing’s brilliant career was tragically cut short after the war, when he suffered outright persecution for his activities as a gay man. He died by suicide in 1954.

    CNS is also making it easier for alumni, staff and other potential donors to give to the Alan Turing Memorial Scholarship fund with an outright gift or a payment pledge. Donations can be made online through the UC San Diego Online Giving portal. To give to the scholarship program, make your gift online at https://giveto.ucsd.edu/make-a-gift?id=a6a587f2-5000-4ca5-b643-ca84554e61bd&ct=t .

    Valeria Gonzalez was the recipient of the CNS Alan Turing Memorial Scholarship for 2016-2017.

    The first recipient of the $10,000 scholarship, Valeria Gonzalez, received the award last spring for the 2016-2017 academic year.  “It’s great to see the CNS is taking the initiative to highlight the importance of bringing diversity to computer science and engineering beyond ethnicity and the gender binary,” said Gonzalez on receiving the inaugural award. “The LGBT community encompasses people with an array of talents and abilities, people such as Alan Turing himself… and knowing that your LGBT identity is acknowledged and accepted not only lets you direct all your focus into working hard but also allows you to connect more with the community you’re part of.” A transfer student from Cypress College, a community college near Los Angeles, Gonzalez has been an undergraduate student researcher in the Integrated Electronics and Biointerfaces Laboratory of Electrical and Computer Engineering professor Shadi Dayeh. She has also been a leader in the UC San Diego Women’s Center, which promotes an inclusive and equitable campus community through the educational, professional and personal development of diverse groups of women.

    Read more about the Alan Turing Memorial Scholarship.

     

     

     

  • CNS at NSDI 2017: Innovating in Networked Systems

    Researchers affiliated with the Center for Networked Systems (CNS) at the University of California San Diego have been selected to present some of their most up-to-date research at the 14th USENIX Symposium on Networked Systems Design and Implementation (NSDI 2017).

    CNS co-director George Porter

    NSDI focuses on the design principles, implementation and practical evaluation of networked and distributed systems. The annual conference will take place March 27-29, 2017, in Boston, MA, and four papers with co-authors from CNS and the Computer Science and Engineering (CSE) department of the Jacobs School of Engineering have been accepted for submission to the prestigious meeting.

    CNS co-director George Porter co-authored two of the papers. “NSDI is one of the most important conferences for us, because just like CNS, the symposium brings together researchers from across the networking and systems community,” said Porter. “Our papers accepted to the 2017 symposium are in line with NSDI’s stated goal of pushing architectural boundaries of network services, and promoting the research dialogue on networked systems.”

    vCorfu

    CSE Ph.D. student Michael Wei and CSE professor Steven Swanson have co-authored with VMware Research (where Wei is currently a researcher) and Princeton University a paper on “vCorfu: Large-Scale Data Stores over a Shared Log.”

    Ph.D. student Michael Wei is now a researcher at VMware.

    vCorfu is a strongly consistent, cloud- scale object store built over a shared log. It augments the traditional replication scheme of a shared log to provide fast reads, and vCorfu leverages a new technique – composable state machine replication – to compose large state machines from smaller ones. “This enables the use of state machine replication to be used efficiently in huge data stores,” said Wei. “We will show that vCorfu outperforms Cassandra, the popular, state-of-the-art NoSQL database for cloud apps It does so while also providing strong consistency in opacity and read-own-writes, efficient transactions, and global snapshots at the scale of the cloud.”

    vCorfu is available as an open-source project on Github at github.com/CorfuDB.

    Datacenter Fault Detection

    CSE Ph.D. student Arjun Roy expects to complete his doctorate in 2017, and he collaborated with his advisor, CSE professor Alex C. Snoeren, on the paper to be presented at NSDI on “Passive Realtime Datacenter Fault Detection.” It reflects joint work with Facebook researchers Hongyi Zeng and Jasmeet Bagga, who are also co-authors on the paper. (The two Facebook engineers previously co-authored a paper at SIGCOMM 2015 with Roy and professors Snoeren and Porter on “Inside the Social Network’s (Datacenter) Network”.) Roy also did internships at Facebook in the summers of 2012, 2013 and 2014.

    CSE Ph.D. student
    Arjun Roy

    According to the paper’s abstract, “datacenters are characterized by their large scale, stringent reliability requirements, and significant application diversity. However, the realities of employing hardware with small but non-zero failure rates mean that datacenters are subject to significant numbers of failures, subsets of packets can be dropped or delayed without triggering a fault signal, so traditional fault detection techniques (involving end-host or router-based statistics) may not identify such errors.

    In their paper, Roy and Snoeren describe how to expedite the process of detecting and localizing partial datacenter faults. It uses an end-host method generalizable to most datacenter applications. “We correlate transport-layer flow metrics and the delay incurred by network-input/output system calls at end hosts with the path that traffic takes through the datacenter,” said Roy. “Then we apply statistical analysis techniques to identify outliers and localize the faulty link and/or switch or switches.

    The paper will detail how the researchers evaluated their novel approach in a production datacenter (Facebook’s) carrying a workload servicing more than 100 million users.

    ExCamera

    In light of the massive explosion in video content on the Internet and for virtual reality, a team of two CSE Master’s students advised by professor George Porter has come up with a new approach to processing video with minimal delays.  Second-year M.S. student Karthikeyan Vasuki Balasubramaniam (who is Porter’s teaching assistant this quarter in CSE 124 on Networked Services) and recent graduate Rahul Bhalerao (M.S. ’16) have had experience in industry (both at Amazon — Balasubramaniam as an intern at Amazon Prime, and Bhalerao currently working at Amazon Web Services).

    M.S. student VB Karthikeyan (left) and CSE alumnus Rahul Bhalerao (M.S. ’16) co-authored the ExCamera paper with CNS co-director George Porter.

    The paper accepted to NSDI is entitled “Encoding, Fast and Slow: Low-Latency Video Processing Using Thousands of Tiny Threads.” In it, the researchers describe ExCamera, a system that can edit, transform and encode a video, including ultra-high-resolution 4K video (four times the resolution of high-definition TV) and stereoscopic virtual reality (VR) material, dozens of times faster than cutting-edge production systems at the largest providers.

    The co-authors lay claim to two major contributions. First, “our coauthors at Stanford developed a novel encoding strategy focusing on fine-grained parallelism, which is rather unique in the encoding space,” explained Balasubramaniam.

    Separately, noted Bhalerao, “ExCamera orchestrates encoding and other video-processing pipelines across the Amazon Web Services Lambda service. The system invokes thousands of threads in parallel, each handling only a fraction of a second of the video.”  The UC San Diego was done in collaboration with researchers at Stanford University.

    MegaSwitch

    MegaSwitch is a multi-fiber ring optical fabric that exploits space-division multiplexing across multiple fibers non-blocking communications that can be rearranged to 30-plus racks and 6,000-plus servers. CNS’s George Porter co-authored the paper on “Enabling Widespread Communications on Optical Fabric with MegaSwitch” with researchers at the Hong Kong University of Science and Technology, SUNY Buffalo, Yale University as well as Omnisense Photonics and CoAdna Photonics.  (No UC San Diego students worked on the paper.)

    According to Porter, “we were seeking an optical interconnect that can enable unconstrained communications within a computing cluster of thousands of servers.” Indeed, existing wired optical interconnects are not ideal for widespread communications in production clusters, and recent efforts to reduce the time it takes to reconfigure the optical circuit from milliseconds to microseconds only partially mitigated the problem (by rapidly time-sharing optical circuits across more nodes).

    “We were still limited by the total number of parallel circuits available simultaneously,” explained Porter. “However, we wanted to evaluate the potential of WDM to scale to a large number of endpoints.”

    Related Links

    USENIX Symposium on Networked Systems Design and Implementation http://www.usenix.org/conference/nsdi17
    Computer Science and Engineering Department http://cse.ucsd.edu/about/news/uc-san-diego-center-nsdi-2017-innovating-networked-systems

  • KC Claffy among “10 Women to Know in Networking/Communications”

    CNS faculty member and principal investigator/founding director of the Center for Applied Internet Data Analysis (CAIDA) at the San Diego Supercomputer Center (SDSC), KC Claffy, has been named to the second annual “10 Women in Networking/Communications That You Should Know” list.

    kc-claffy_n2women

    KC Claffy, CNS faculty member

    Now in its second year, the list is compiled and coordinated by N2 Women (Networking/Networking Women), a discipline-specific community for researchers in the communications and networking research fields. The organization’s main goal is to foster connections among under-represented women in computer networking and related research fields. The full list of this year’s award recipients can be found here.

    Nominations are solicited both from the N2Women community as well as through several mailing lists related to networking and communications. More than 150 people from around the world submitted nominations, resulting in over 140 distinct names of accomplished women in the field, according to the organization.

    A committee of five NWomen board members selected this year’s 10 honorees. “Many people from around the world submitted one or more nominations for this list, and it was very difficult to choose only 10 amazing women,” said Oana Iova, a postdoctoral researcher in the D3S  research group with the Department of Information Engineering and Computer Science (DISI)  at the University of Trento, Italy , and the awards co-chair who led the nomination and selection processes this year. “We focused on women who have had a major impact in networking and/or communications. We also wanted a list that reflected presented our diversity, and specifically the diversity in the area of networking/communications.”

    “I am honored to join such a distinguished group on this year’s N2 Women’s list,” said Claffy, who founded CAIDA in 1997 as a collaboration among commercial, government and academic research sectors to promote greater cooperation in the engineering and maintenance of a robust, scalable global internet infrastructure. “I encourage other women working in networking and communications to attend or help organize an N2Women event at their next ACM, IEEE, or other relevant conference or workshop.”

    Today, CAIDA’s research interests include internet cartography, or detailed analyses of the changing nature of the Internet’s topology, routing and traffic dynamics. CAIDA also investigates the implications of these changes on network science, architecture, infrastructure security and stability, and public policy.

    Earlier this year CAIDA was awarded a $1.4 million grant from the U.S. Department of Homeland Security to demonstrate and illuminate structural and dynamic aspects of the Internet infrastructure relevant to cybersecurity vulnerabilities. These aspects include macroscopic stability and resiliency analyses, grey markets for IPv4 addressing resources, and on-demand router-level topology inference.

    In 2015, Claffy received the IEEE Internet Award for her “seminal contributions to the field of Internet measurement, including security and network data analysis, and for distinguished leadership in and service to the Internet community by providing open-access data and tools,” according to a notice published by the institute .